zoukankan      html  css  js  c++  java
  • [算法]用java实现堆操作

    问题描述:
    (1)建堆:将数组A[1..n]变成一个最大堆。(课本6.3)
    (2)堆排序:将一个堆中的元素按递减排序输出。
    (3)用插入方法建堆:堆大小从1到n每次插入一个元素到堆中,直到n个元素入堆。(课本p83,6-1)

    public class heap_Tools {
        //将一个元素插入堆中
        public static void insert(List<Integer> heap,int value){
            if(heap.size() == 0){     //0下标放置null
                heap.add(0, null);
                heap.add(1,value);
            }else {
                heap.add(value);
                heapUp(heap,heap.size()-1);
            }
        }
        //插入后向上调整位置,转变为大顶堆
        public static void heapUp(List<Integer> heap,int index){
            if(index >1){
                int parent = index/2;
                if(heap.get(parent) < heap.get(index)){
                    swap(heap, parent, index);
                    heapUp(heap, parent);
                }
            }
        }
        //对大顶堆排序
        public static List<Integer> sort(List<Integer> heap){
            for(int i = heap.size()-1;i>0;i--){
                swap(heap, 1,i );
                adjust(heap, 1, i-1);;
            }
            return heap;
        }
        //生成并输出一个大顶堆
        public static List<Integer> adjust(List<Integer> heap){
            for(int i =heap.size()/2;i>0;i--){
                adjust(heap,i,heap.size()-1);
            }
            System.out.println("将数组转化为最大堆输出:");
            print_heap(heap);
            return heap;
        }
        public static void adjust(List<Integer> heap,int index,int n){
            int child = index*2;
            if((child+1)<=n&&heap.get(child)<heap.get(child+1)){  //判断如果左孩子<右孩子
                child +=1;
            }
            if(child<n&&heap.get(index)<heap.get(child)){
                swap(heap,index,child);
            }
            if(child<=n/2){
                adjust(heap, child, n);  //交换后,以child为根的子树不一定满足大顶堆定义,递推调整
            }
        }
        //交换List中的两个值
        public static void swap(List<Integer> heap,int a,int b) {
            int temp;
            temp = heap.get(a);
            heap.set(a, heap.get(b));
            heap.set(b, temp);
        }
        public static void print_heap(List<Integer> heap){
            int floors = 0;
            for(int i = 1;i<heap.size();i++){
                System.out.print(heap.get(i)+"	");
                if(i == (2<<floors)-1){
                    floors++;
                    System.out.print("
    ");
                }
            }
        }
    }

    二:下沉法获得最大堆

    public class Max_heap {
    
        public static void main(String[] args){
            //下沉法获得最大堆
            int[] A =  {1,2,5,10,3,7,11,15,17,20,10,9,5,8,6};
            List<Integer> array = new ArrayList<Integer>();
            array.add(0, null);
            for(int i = 0; i<A.length;i++){
                array.add(A[i]);
            }
            heap_Tools.adjust(array);
        }
    }

    三:将堆按照从大到小输出

    public class heap_sort {
        public static void main(String[] args){
            //下沉法获得最大堆
            int[] A =  {1,2,5,10,3,7,11,15,17,20,10,9,5,8,6};
            List<Integer> array = new ArrayList<Integer>();
            array.add(0, null);
            for(int i = 0; i<A.length;i++){
                array.add(A[i]);
            }
            List<Integer> heap = heap_Tools.adjust(array);
            heap = heap_Tools.sort(heap);
            System.out.println("将堆中元素按递减顺序输出:");
            for(int i = heap.size()-1;i>0;i--){
                System.out.print(heap.get(i)+"	");
            }
        }
    }

    四:插入法建堆

    public class insert_build_heap {
        public static void main(String[] args){
            //下沉法获得最大堆
            int[] A =  {1,2,5,10,3,7,11,15,17,20,10,9,5,8,6};
            List<Integer> array = new ArrayList<Integer>();
            for(int i = 0; i<A.length;i++){
                heap_Tools.insert(array,A[i]);
            }        
            System.out.println("插入建立的堆为:");
            heap_Tools.print_heap(array);
        }
    }

  • 相关阅读:
    springmvc&参数绑定&异常处理&Json数据交互&上传图片
    从零开始搭建一个vue.js的脚手架
    supervisor配置详解(转)
    supervisor 从安装到使用
    linux下如何查看某软件是否已安装
    linux yum命令详解
    Vue.js 和 MVVM 小细节
    PHP7的异常处理机制,set_error_handler和set_exception_handler方法介绍
    使用 acme.sh 签发续签 Let‘s Encrypt 证书 泛域名证书
    SSH原理与运用(一):远程登录
  • 原文地址:https://www.cnblogs.com/gejuncheng/p/8795780.html
Copyright © 2011-2022 走看看