zoukankan      html  css  js  c++  java
  • Tautology(structure)

    Tautology
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 10061   Accepted: 3826

    Description

    WFF 'N PROOF is a logic game played with dice. Each die has six faces representing some subset of the possible symbols K, A, N, C, E, p, q, r, s, t. A Well-formed formula (WFF) is any string of these symbols obeying the following rules:

    • p, q, r, s, and t are WFFs
    • if w is a WFF, Nw is a WFF
    • if w and x are WFFs, Kwx, Awx, Cwx, and Ewx are WFFs.
    The meaning of a WFF is defined as follows:
    • p, q, r, s, and t are logical variables that may take on the value 0 (false) or 1 (true).
    • K, A, N, C, E mean and, or, not, implies, and equals as defined in the truth table below.
    Definitions of K, A, N, C, and E
         w  x   Kwx   Awx    Nw   Cwx   Ewx
      1  1   1   1    0   1   1
      1  0   0   1    0   0   0
      0  1   0   1    1   1   0
      0  0   0   0    1   1   1

    A tautology is a WFF that has value 1 (true) regardless of the values of its variables. For example, ApNp is a tautology because it is true regardless of the value of p. On the other hand, ApNq is not, because it has the value 0 for p=0, q=1.

    You must determine whether or not a WFF is a tautology.

    Input

    Input consists of several test cases. Each test case is a single line containing a WFF with no more than 100 symbols. A line containing 0 follows the last case.

    Output

    For each test case, output a line containing tautology or not as appropriate.

    Sample Input

    ApNp
    ApNq
    0

    Sample Output

    tautology
    not

    Source

     1 #include<stdio.h>
     2 #include<string.h>
     3 #include<iostream>
     4 using namespace std;
     5 int p , q , r , s , t ;
     6 int K[2][2] = {0 , 0 , 0 , 1} , A[2][2] = {0 , 1 , 1 , 1} , N[2] = {1 , 0} , C[2][2] = {1 , 1 , 0 , 1} , E[2][2] = {1 , 0 , 0 , 1} ;
     7 string st ;
     8 int now ;
     9 bool flag ;
    10 
    11 int calc ()
    12 {
    13     now++ ;
    14     switch (st[now])
    15     {
    16         case 'K' : return K[calc()][calc()] ;
    17         case 'A' : return A[calc()][calc()] ;
    18         case 'N' : return N[calc()] ;
    19         case 'C' : return C[calc()][calc()] ;
    20         case 'E' : return E[calc()][calc()] ;
    21         case 'p' : return p ;
    22         case 'q' : return q ;
    23         case 'r' : return r ;
    24         case 's' : return s ;
    25         case 't' : return t ;
    26     }
    27 }
    28 int main ()
    29 {
    30    // freopen ("a.txt" , "r" , stdin) ;
    31     while (cin >> st && st != "0") {
    32         flag = 0 ;
    33         for (p = 0 ; p < 2 && !flag ; p++)
    34             for (q = 0 ; q < 2 && !flag ; q++)
    35                 for (r = 0 ; r < 2 && !flag ; r++)
    36                     for (s = 0 ; s < 2 && !flag ; s++)
    37                         for (t = 0 ; t < 2 && !flag ; t++) {
    38                                 now = -1 ;
    39                             if ( !calc() )
    40                                 flag = true ;
    41                         }
    42         if (flag)
    43             puts ("not") ;
    44         else
    45             puts ("tautology") ;
    46     }
    47     return 0 ;
    48 }
    View Code

    漂亮的使用了回溯。
    转载:http://blog.csdn.net/allenlsy/article/details/4885948

    tautology : 中文叫套套理论 , 或 永真式 , 就是无论位运算中的variable怎么变,最后答案都为1

    题目里的implies 指 蕴涵 , 当且仅当 (条件q = 1) ----> (结论s = 0) 时为假 ,其余都为真

  • 相关阅读:
    SpringBoot入门之基于XML的Mybatis
    SpringBoot入门之基于注解的Mybatis
    自定义Fiddler插件二
    SpringBoot入门之集成JSP
    SpringBoot入门之Thymeleaf的使用
    自定义Fiddler插件一
    SpringBoot入门之简单配置
    Eclipse引入SpringBoot
    SpringMVC之数据传递三Ajax与Controller交互
    SpringMVC之拦截器实现登录验证
  • 原文地址:https://www.cnblogs.com/get-an-AC-everyday/p/4299525.html
Copyright © 2011-2022 走看看