zoukankan      html  css  js  c++  java
  • UVa11235 FrequentValues(RMQ)

    Problem F: Frequent values

    You are given a sequence of n integers a1 , a2 , ... , an in non-decreasing order. In addition to that, you are given several queries consisting of indices i and j (1 ≤ i ≤ j ≤ n). For each query, determine the most frequent value among the integers ai , ... , aj.

    Input Specification

    The input consists of several test cases. Each test case starts with a line containing two integers n and q(1 ≤ n, q ≤ 100000). The next line contains n integers a1 , ... , an (-100000 ≤ ai ≤ 100000, for each i ∈ {1, ..., n}) separated by spaces. You can assume that for each i ∈ {1, ..., n-1}: ai ≤ ai+1. The following q lines contain one query each, consisting of two integers i and j (1 ≤ i ≤ j ≤ n), which indicate the boundary indices for the query.

    The last test case is followed by a line containing a single 0.

    Output Specification

    For each query, print one line with one integer: The number of occurrences of the most frequent value within the given range.

    Sample Input

    10 3
    -1 -1 1 1 1 1 3 10 10 10
    2 3
    1 10
    5 10
    0
    

    Sample Output

    1
    4
    3

    题目大意:
    给一个非降序排列的整数数组a,你的任务是对于一系列询问(i, j),回答ai,ai+1...aj中次数出现最多的值所出现的次数。

    分析:
    由于数列是非降序的,所以所有相等的数都会聚集在一起。这样我们就可以把整个数组进行编码。如-1,1,1,2,2,2,4就可以编码成(-1,1),(1,2),(2,3),(4,1)表示(a,b)数组中的a连续出现了b次。用num[i]表示原数组下表是i的数在编码后的第num[i]段。left[i],right[i]表示第i段的左边界和右边界,用coun[i]表示第i段有conu[i]个相同的数。这样的话每次查询(L, R)就只要计算(right[L]-L+1),(R-left[R]+1)和RMQ(num[L]+1, num[R]-1)这三个值的最大值就可以了。
    其中,RMQ是对coun数组进行取件查询的结果。
    特殊的,如果L和R在同一个区间内的话,那么结果就是(R-L+1)

    详见代码:
     1 #include <map>
     2 #include <set>
     3 #include <stack>
     4 #include <queue>
     5 #include <cmath>
     6 #include <ctime>
     7 #include <vector>
     8 #include <cstdio>
     9 #include <cctype>
    10 #include <cstring>
    11 #include <cstdlib>
    12 #include <iostream>
    13 #include <algorithm>
    14 using namespace std;
    15 #define INF 0x3f3f3f3f
    16 #define inf -0x3f3f3f3f
    17 #define lson k<<1, L, mid
    18 #define rson k<<1|1, mid+1, R
    19 #define mem0(a) memset(a,0,sizeof(a))
    20 #define mem1(a) memset(a,-1,sizeof(a))
    21 #define mem(a, b) memset(a, b, sizeof(a))
    22 #define FOPENIN(IN) freopen(IN, "r", stdin)
    23 #define FOPENOUT(OUT) freopen(OUT, "w", stdout)
    24 
    25 template<class T> T CMP_MIN(T a, T b) { return a < b; }
    26 template<class T> T CMP_MAX(T a, T b) { return a > b; }
    27 template<class T> T MAX(T a, T b) { return a > b ? a : b; }
    28 template<class T> T MIN(T a, T b) { return a < b ? a : b; }
    29 template<class T> T GCD(T a, T b) { return b ? GCD(b, a%b) : a; }
    30 template<class T> T LCM(T a, T b) { return a / GCD(a,b) * b;    }
    31 
    32 //typedef __int64 LL;
    33 typedef long long LL;
    34 const int MAXN = 100005;
    35 const int MAXM = 100005;
    36 const double eps = 1e-12;
    37 
    38 int num[MAXN], coun[MAXN], Left[MAXN], Right[MAXN];
    39 int n, q, a, last, tot;
    40 int DP[MAXN][20];
    41 
    42 void init_RMQ()
    43 {
    44     mem0(DP);
    45     for(int i=1;i<=tot;i++) DP[i][0] = coun[i];
    46     for(int j=1;(1<<j)<=n;j++)
    47     {
    48         for(int i=1;i+(1<<j)<=tot;i++)
    49         {
    50             DP[i][j] = max(DP[i][j-1], DP[i+(1<<(j-1))][j-1]);
    51         }
    52     }
    53 }
    54 
    55 int RMQ(int L, int R)
    56 {
    57     if(L > R) return 0;
    58     int k = 0;
    59     while((1<<(1+k)) <= R-L+1) k++;
    60     return max(DP[L][k], DP[R-(1<<k)+1][k]);
    61 }
    62 
    63 int main()
    64 {
    65 //    FOPENIN("in.txt");
    66 //    FOPENOUT("out.txt");
    67     while(~scanf("%d", &n) && n)
    68     {
    69         scanf("%d", &q);
    70         tot = 0; mem0(Left); mem0(Right); mem0(coun);
    71         for(int i=1;i<=n;i++)
    72         {
    73             scanf("%d", &a);
    74             if(i==1) { ++tot;   last=a;  Left[tot] = 1; }
    75             if(last == a) { num[i]=tot; coun[tot]++; Right[tot]++; }
    76             else { num[i]=++tot; coun[tot]++; Left[tot]=Right[tot]=i; last=a; }
    77         }
    78         init_RMQ();
    79         int l, r;
    80         for(int i=0;i<q;i++)
    81         {
    82             scanf("%d%d", &l, &r);
    83             if(num[l] == num[r]) { printf("%d
    ", r-l+1);  continue; }
    84             printf("%d
    ", max( RMQ(num[l]+1, num[r]-1), max( Right[num[l]]-l+1, r-Left[num[r]]+1 ) ) );
    85         }
    86     }
    87     return 0;
    88 }
  • 相关阅读:
    【OS_Windows】用微pe制作启动盘安装操作系统
    技术列表
    RPC 的概念模型与实现解析
    asp.net站点阻止某个文件夹或者文件被浏览器访问
    常用插件
    安全相关
    asp.net mvc 请求处理流程,记录一下。
    接口的显示实现和隐式实现
    值类型与引用类型的简单测试,没有太多的理论,一目了然。
    IEnumerable、GetEnumerator、IEnumerator之间的关系。
  • 原文地址:https://www.cnblogs.com/gj-Acit/p/3584686.html
Copyright © 2011-2022 走看看