Problem F: Frequent values
You are given a sequence of n integers a1 , a2 , ... , an in non-decreasing order. In addition to that, you are given several queries consisting of indices i and j (1 ≤ i ≤ j ≤ n). For each query, determine the most frequent value among the integers ai , ... , aj.
Input Specification
The input consists of several test cases. Each test case starts with a line containing two integers n and q(1 ≤ n, q ≤ 100000). The next line contains n integers a1 , ... , an (-100000 ≤ ai ≤ 100000, for each i ∈ {1, ..., n}) separated by spaces. You can assume that for each i ∈ {1, ..., n-1}: ai ≤ ai+1. The following q lines contain one query each, consisting of two integers i and j (1 ≤ i ≤ j ≤ n), which indicate the boundary indices for the query.
The last test case is followed by a line containing a single 0.
Output Specification
For each query, print one line with one integer: The number of occurrences of the most frequent value within the given range.
Sample Input
10 3 -1 -1 1 1 1 1 3 10 10 10 2 3 1 10 5 10 0
Sample Output
1 4 3
题目大意:
给一个非降序排列的整数数组a,你的任务是对于一系列询问(i, j),回答ai,ai+1...aj中次数出现最多的值所出现的次数。
分析:
由于数列是非降序的,所以所有相等的数都会聚集在一起。这样我们就可以把整个数组进行编码。如-1,1,1,2,2,2,4就可以编码成(-1,1),(1,2),(2,3),(4,1)表示(a,b)数组中的a连续出现了b次。用num[i]表示原数组下表是i的数在编码后的第num[i]段。left[i],right[i]表示第i段的左边界和右边界,用coun[i]表示第i段有conu[i]个相同的数。这样的话每次查询(L, R)就只要计算(right[L]-L+1),(R-left[R]+1)和RMQ(num[L]+1, num[R]-1)这三个值的最大值就可以了。
其中,RMQ是对coun数组进行取件查询的结果。
特殊的,如果L和R在同一个区间内的话,那么结果就是(R-L+1)
详见代码:
1 #include <map> 2 #include <set> 3 #include <stack> 4 #include <queue> 5 #include <cmath> 6 #include <ctime> 7 #include <vector> 8 #include <cstdio> 9 #include <cctype> 10 #include <cstring> 11 #include <cstdlib> 12 #include <iostream> 13 #include <algorithm> 14 using namespace std; 15 #define INF 0x3f3f3f3f 16 #define inf -0x3f3f3f3f 17 #define lson k<<1, L, mid 18 #define rson k<<1|1, mid+1, R 19 #define mem0(a) memset(a,0,sizeof(a)) 20 #define mem1(a) memset(a,-1,sizeof(a)) 21 #define mem(a, b) memset(a, b, sizeof(a)) 22 #define FOPENIN(IN) freopen(IN, "r", stdin) 23 #define FOPENOUT(OUT) freopen(OUT, "w", stdout) 24 25 template<class T> T CMP_MIN(T a, T b) { return a < b; } 26 template<class T> T CMP_MAX(T a, T b) { return a > b; } 27 template<class T> T MAX(T a, T b) { return a > b ? a : b; } 28 template<class T> T MIN(T a, T b) { return a < b ? a : b; } 29 template<class T> T GCD(T a, T b) { return b ? GCD(b, a%b) : a; } 30 template<class T> T LCM(T a, T b) { return a / GCD(a,b) * b; } 31 32 //typedef __int64 LL; 33 typedef long long LL; 34 const int MAXN = 100005; 35 const int MAXM = 100005; 36 const double eps = 1e-12; 37 38 int num[MAXN], coun[MAXN], Left[MAXN], Right[MAXN]; 39 int n, q, a, last, tot; 40 int DP[MAXN][20]; 41 42 void init_RMQ() 43 { 44 mem0(DP); 45 for(int i=1;i<=tot;i++) DP[i][0] = coun[i]; 46 for(int j=1;(1<<j)<=n;j++) 47 { 48 for(int i=1;i+(1<<j)<=tot;i++) 49 { 50 DP[i][j] = max(DP[i][j-1], DP[i+(1<<(j-1))][j-1]); 51 } 52 } 53 } 54 55 int RMQ(int L, int R) 56 { 57 if(L > R) return 0; 58 int k = 0; 59 while((1<<(1+k)) <= R-L+1) k++; 60 return max(DP[L][k], DP[R-(1<<k)+1][k]); 61 } 62 63 int main() 64 { 65 // FOPENIN("in.txt"); 66 // FOPENOUT("out.txt"); 67 while(~scanf("%d", &n) && n) 68 { 69 scanf("%d", &q); 70 tot = 0; mem0(Left); mem0(Right); mem0(coun); 71 for(int i=1;i<=n;i++) 72 { 73 scanf("%d", &a); 74 if(i==1) { ++tot; last=a; Left[tot] = 1; } 75 if(last == a) { num[i]=tot; coun[tot]++; Right[tot]++; } 76 else { num[i]=++tot; coun[tot]++; Left[tot]=Right[tot]=i; last=a; } 77 } 78 init_RMQ(); 79 int l, r; 80 for(int i=0;i<q;i++) 81 { 82 scanf("%d%d", &l, &r); 83 if(num[l] == num[r]) { printf("%d ", r-l+1); continue; } 84 printf("%d ", max( RMQ(num[l]+1, num[r]-1), max( Right[num[l]]-l+1, r-Left[num[r]]+1 ) ) ); 85 } 86 } 87 return 0; 88 }