zoukankan      html  css  js  c++  java
  • hdu 3908 Triple(组合计数、容斥原理)

    Triple

    Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others) Total Submission(s): 1365    Accepted Submission(s): 549

    Problem Description
    Given many different integers, find out the number of triples (a, b, c) which satisfy a, b, c are co-primed each other or are not co-primed each other. In a triple, (a, b, c) and (b, a, c) are considered as same triple.
     
    Input
    The first line contains a single integer T (T <= 15), indicating the number of test cases. In each case, the first line contains one integer n (3 <= n <= 800), second line contains n different integers d (2 <= d < 105) separated with space.
     
    Output
    For each test case, output an integer in one line, indicating the number of triples.
     
    Sample Input
    1 6 2 3 5 7 11 13
     
    Sample Output
    20
     
    Source
     
    给你n个数,对于其中的任意n个数,a,b,c 要么两两互斥,要么a,b,c两两不互斥......
    要你求出满足这一条件的组合数。
    分析:
        对于任意的三个数,a,b,c 我们知道有这些情况,0对互斥(即两两都不互斥),1对互斥,两对互斥,三对互斥(即两两互斥)。
      代码:
     
     1 #include<cstdio>
     2 #include<cstring>
     3 using namespace std;
     4 const int maxn=100005;
     5 int item[maxn];
     6 int  gcd(int a,int b)
     7 {
     8     if(b==0)return a;
     9     return gcd(b,a%b);
    10 }
    11 int main()
    12 {
    13   int cas,n;
    14   scanf("%d",&cas);
    15   while(cas--)
    16   {
    17     scanf("%d",&n);
    18    for(int i=0;i<n;i++)
    19     scanf("%d",item+i);
    20    int ans=0;
    21    for(int i=0;i<n;i++)
    22    {
    23          int numa=0,numb=0;
    24         for(int j=0;j<n;j++)
    25      {
    26          if(i!=j)
    27          {
    28            if(gcd(item[i],item[j])==1)numa++;
    29            else numb++;
    30          }
    31      }
    32       ans+=numa*numb;
    33    }
    34     printf("%d
    ",(n*(n-1)*(n-2)/6)-ans/2);
    35   }
    36  return 0;
    37 }
    View Code
  • 相关阅读:
    Logistic回归
    朴素贝叶斯
    决策树
    K-邻近(KNN)算法
    快速排序
    归并排序
    希尔排序
    插入排序
    选择排序
    浅谈系统服务分发
  • 原文地址:https://www.cnblogs.com/gongxijun/p/4049046.html
Copyright © 2011-2022 走看看