Given a binary tree, collect a tree's nodes as if you were doing this: Collect and remove all leaves, repeat until the tree is empty.
Example:
Input: [1,2,3,4,5]
1
/
2 3
/
4 5
Output: [[4,5,3],[2],[1]]
Explanation:
1. Removing the leaves [4,5,3]
would result in this tree:
1 / 2
2. Now removing the leaf [2]
would result in this tree:
1
3. Now removing the leaf [1]
would result in the empty tree:
[]
Credits:
Special thanks to @elmirap for adding this problem and creating all test cases.
这道题给了我们一个二叉树,让我们返回其每层的叶节点,就像剥洋葱一样,将这个二叉树一层一层剥掉,最后一个剥掉根节点。那么题目中提示说要用DFS来做,思路是这样的,每一个节点从左子节点和右子节点分开走可以得到两个深度,由于成为叶节点的条件是左右子节点都为空,所以我们取左右子节点中较大值加1为当前节点的深度值,知道了深度值就可以将节点值加入到结果res中的正确位置了,求深度的方法我们可以参见 Maximum Depth of Binary Tree 中求最大深度的方法,参见代码如下:
解法一:
class Solution { public: vector<vector<int>> findLeaves(TreeNode* root) { vector<vector<int>> res; helper(root, res); return res; } int helper(TreeNode* root, vector<vector<int>>& res) { if (!root) return -1; int depth = 1 + max(helper(root->left, res), helper(root->right, res)); if (depth >= res.size()) res.resize(depth + 1); res[depth].push_back(root->val); return depth; } };
下面这种DFS方法没有用计算深度的方法,而是使用了一层层剥离的方法,思路是遍历二叉树,找到叶节点,将其赋值为NULL,然后加入leaves数组中,这样一层层剥洋葱般的就可以得到最终结果了:
解法二:
class Solution { public: vector<vector<int>> findLeaves(TreeNode* root) { vector<vector<int>> res; while (root) { vector<int> leaves; root = remove(root, leaves); res.push_back(leaves); } return res; } TreeNode* remove(TreeNode* node, vector<int>& leaves) { if (!node) return NULL; if (!node->left && !node->right) { leaves.push_back(node->val); return NULL; } node->left = remove(node->left, leaves); node->right = remove(node->right, leaves); return node; } };
还有一种不用建立新的递归函数的方法,就用本身来做递归,我们首先判空,然后对左右子结点分别调用递归函数,这样我们suppose左右子结点的所有叶结点已经按顺序存好到了二维数组left和right中,现在要做的就是把两者合并。但是我们现在并不知道左右子树谁的深度大,我们希望将长度短的二维数组加入到长的里面,那么就来比较下两者的长度,把长度存到结果res中,把短的存入到t中,然后遍历短的,按顺序都加入到结果res里,好在这道题没有强行要求每层的叶结点要按照从左到右的顺序存入。当左右子树的叶结点融合完成了之后,当前结点也要新开一层,直接自己组一层,加入结果res中即可,参见代码如下:
解法三:
class Solution { public: vector<vector<int>> findLeaves(TreeNode* root) { if (!root) return {}; vector<vector<int>> left = findLeaves(root->left), right = findLeaves(root->right); vector<vector<int>> res = (left.size() >= right.size()) ? left : right; vector<vector<int>> t = (left.size() >= right.size()) ? right : left; for (int i = 0; i < t.size(); ++i) { res[i].insert(res[i].begin(), t[i].begin(), t[i].end()); } res.push_back({root->val}); return res; } };
类似题目:
参考资料: