zoukankan      html  css  js  c++  java
  • [LintCode] Minimum Size Subarray Sum 最小子数组和的大小

    Given an array of n positive integers and a positive integer s, find the minimal length of a subarray of which the sum ≥ s. If there isn't one, return -1 instead.

     
    Example

    Given the array [2,3,1,2,4,3] and s = 7, the subarray [4,3] has the minimal length under the problem constraint.

    Challenge

    If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).

    LeetCode上的原题,请参见我之前的博客Minimum Size Subarray Sum

    解法一:

    class Solution {
    public:
        /**
         * @param nums: a vector of integers
         * @param s: an integer
         * @return: an integer representing the minimum size of subarray
         */
        int minimumSize(vector<int> &nums, int s) {
            int res = INT_MAX, sum = 0, left = 0;
            for (int i = 0; i < nums.size(); ++i) {
                sum += nums[i];
                if (sum >= s) {
                    while (left < i && sum >= s) {
                        res = min(res, i - left + 1);
                        sum -= nums[left++];
                    }
                }
            }
            return res == INT_MAX ? -1 : res;
        }
    };

    解法二:

    class Solution {
    public:
        /**
         * @param nums: a vector of integers
         * @param s: an integer
         * @return: an integer representing the minimum size of subarray
         */
        int minimumSize(vector<int> &nums, int s) {
            int res = INT_MAX, n = nums.size();
            vector<int> sums(n + 1, 0);
            for (int i = 1; i < n + 1; ++i) sums[i] = sums[i - 1] + nums[i - 1];
            for (int i = 0; i < n + 1; ++i) {
                int left = i + 1, right = n, t = sums[i] + s;
                while (left <= right) {
                    int mid = left + (right - left) / 2;
                    if (sums[mid] < t) left = mid + 1;
                    else right = mid - 1;
                }
                if (left == n + 1) break;
                res = min(res, left - i);
            }
            return res == INT_MAX ? -1 : res;
        }
    };
  • 相关阅读:
    Binder机制1---Binder原理介绍
    ShareSDK for iOS 2.9.0已经公布
    TCP/IP数据包结构具体解释
    苹果ipa软件包破解笔记
    自己定义对象的监听方式
    强大的PropertyGrid
    matlab中plot使用方法
    fopen 參数具体解释
    leetcode:linked_list_cycle_II
    AssemblyInfo.cs文件的作用
  • 原文地址:https://www.cnblogs.com/grandyang/p/5810138.html
Copyright © 2011-2022 走看看