zoukankan      html  css  js  c++  java
  • LeetCode_Unique Binary Search Trees II

    Given n, generate all structurally unique BST's (binary search trees) that store values 1...n.
    
    For example,
    Given n = 3, your program should return all 5 unique BST's shown below.
       1         3     3      2      1
               /     /      /       
         3     2     1      1   3      2
        /     /                        
       2     1         2                 3
    

    转自: http://yucoding.blogspot.com/2013/05/leetcode-question115-unique-binary.html  

    Analysis:

    The basic idea is still using the DFS scheme. It is a little hard to think the structure of the argument list in the function. It is clear that for each tree/subtree, we will set the root as the start position to the end position, and recursively construct the left subtree with the left part and the right subtree with the right part.
    So first we can have
     void dfs (int st, int ed     ){
       if (st>ed) {   // generate a null node }
      else{
        for (int i=st;i<=ed;i++){
            
          dfs(st,i-1,   );     //generate left subtree 
          dfs(i+1,ed,   );  // generate right subtree
        }
      }

    }

    Next step is to think about how to store all the possible solutions.
    This is important ! Think about the root node, all the possible solutions of the tree are from the combinations of all the possible solutions of its left subtree, and its right subtree. One step further, if we have a root node and a left node, for the left node, still the subtrees below it are the combinations of the possible solutions of its left and right subtree, until the leaf node.

    In other words, we store all the possible solutions for each node, instead of storing the only tree. So, we can have
    void dfs(int st, int ed, vector<TreeNode *> res){}
    in this function, recursively generate the left tree and right tree, then construct the current node, and push it to the current solution vector.
    Details see the code.

    /**
     * Definition for binary tree
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
     * };
     */
    class Solution {
    public:
       void dfs(vector<TreeNode *> &res, int left , int right){
           if(left > right){
                res.push_back(NULL);
                return ;
           }
           
           for(int k = left; k <= right ; k++)
           {    
                vector<TreeNode *> leftTree;
                dfs(leftTree, left, k-1);
                vector<TreeNode *> rightTree;
                dfs(rightTree, k+1, right);
                for(int i = 0; i < leftTree.size(); i++)
                    for( int j = 0; j < rightTree.size(); j++)
                        {
                            TreeNode *root = new TreeNode(k);
                            root->left = leftTree[i];
                            root->right = rightTree[j];
                            res.push_back(root);
                        }
           }
       }
        vector<TreeNode *> generateTrees(int n) {
            // Start typing your C/C++ solution below
            // DO NOT write int main() function
            vector<TreeNode *> res;
            dfs(res, 1, n);
            return res;
        }
    };
  • 相关阅读:
    数学归纳法证明等值多项式
    整值多项式
    同余式
    欧拉定理&费马定理
    与模互质的剩余组
    欧拉函数的性质
    欧拉函数计数定理
    完全剩余组高阶定理
    51nod 1488 帕斯卡小三角 斜率优化
    51nod 1577 异或凑数 线性基的妙用
  • 原文地址:https://www.cnblogs.com/graph/p/3254141.html
Copyright © 2011-2022 走看看