Notice that the number 123456789 is a 9-digit number consisting exactly the numbers from 1 to 9, with no duplication. Double it we will obtain 246913578, which happens to be another 9-digit number consisting exactly the numbers from 1 to 9, only in a different permutation. Check to see the result if we double it again!
Now you are suppose to check if there are more numbers with this property. That is, double a given number with k digits, you are to tell if the resulting number consists of only a permutation of the digits in the original number.
Input Specification:
Each input file contains one test case. Each case contains one positive integer with no more than 20 digits.
Output Specification:
For each test case, first print in a line "Yes" if doubling the input number gives a number that consists of only a permutation of the digits in the original number, or "No" if not. Then in the next line, print the doubled number.
Sample Input:
1234567899
Sample Output:
Yes 2469135798
题目大意:求大整数加法的一个变种,一个大整数(N<20),乘以2后的的另一个大整数,判断其中一个大整数是否可以通过位数的变化得到另一个大整数。
#include<iostream>
#include<stdio.h>
#include<cstring>
using namespace std;
#define max 22
int number[max];
int double_number[max];
int main(){
char num[max];
scanf("%s",num);
memset(number,0,sizeof(number));
memset(double_number,0,sizeof(double_number));
int length = strlen(num);
int i,j=0,k=0;
for(i=length-1;i>=0;i--){
int value=num[i]-'0';
number[value]++;
double_number[i]=value*2;
}
int sum[max];
for(i=length-1,j=0;i>=0;i--,j++){
sum[j]=(double_number[i]+k)%10;
k=(double_number[i]+k)/10;
}
if(k!=0){
sum[j]=k;
j++;
}
int compare[max];
memset(compare,0,sizeof(compare));
for(i=0;i<j;i++){
compare[sum[i]]++;
}
int flag=0;
for(i=0;i<j;i++){
if(compare[i]!=number[i]){
flag = 1;
break;
}
}
if(flag == 1){
printf("No
");
}
else {
printf("Yes
");
}
for(i=j-1;i>=0;i--){
printf("%d",sum[i]);
}
printf("
");
}