zoukankan      html  css  js  c++  java
  • 1070. Mooncake (25)

    Mooncake is a Chinese bakery product traditionally eaten during the Mid-Autumn Festival. Many types of fillings and crusts can be found in traditional mooncakes according to the region's culture. Now given the inventory amounts and the prices of all kinds of the mooncakes, together with the maximum total demand of the market, you are supposed to tell the maximum profit that can be made.

    Note: partial inventory storage can be taken. The sample shows the following situation: given three kinds of mooncakes with inventory amounts being 180, 150, and 100 thousand tons, and the prices being 7.5, 7.2, and 4.5 billion yuans. If the market demand can be at most 200 thousand tons, the best we can do is to sell 150 thousand tons of the second kind of mooncake, and 50 thousand tons of the third kind. Hence the total profit is 7.2 + 4.5/2 = 9.45 (billion yuans).

    Input Specification:

    Each input file contains one test case. For each case, the first line contains 2 positive integers N (<=1000), the number of different kinds of mooncakes, and D (<=500 thousand tons), the maximum total demand of the market. Then the second line gives the positive inventory amounts (in thousand tons), and the third line gives the positive prices (in billion yuans) of N kinds of mooncakes. All the numbers in a line are separated by a space.

    Output Specification:

    For each test case, print the maximum profit (in billion yuans) in one line, accurate up to 2 decimal places.

    Sample Input:

    3 200
    180 150 100
    7.5 7.2 4.5
    

    Sample Output:

    9.45

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<vector>
    using namespace std;
    struct Node{
    	double perprice;
    	double amount;
    	double money;
    };
    bool cmp(Node a, Node b){
    	return a.perprice>b.perprice;
    }
    int main(){
    	int i,j;
    	int N,D;
    	scanf("%d%d",&N,&D);
    	vector<Node>node;
    	node.resize(N);
    	for(i=0;i<N;i++){
    		scanf("%lf",&node[i].amount);
    	}
    	double tmp;
    	for(i=0;i<N;i++){
    		scanf("%lf",&tmp);
    		node[i].money=tmp;
    		node[i].perprice=tmp*1.0/node[i].amount;
    	}
    	sort(node.begin(),node.end(),cmp);
    	double sum=0;
    	i=0;
    	while(0<D){
    		if(D>=node[i].amount){
    			D-=node[i].amount;
    			sum+=node[i].money;
    		}else {
    			sum+=node[i].money*D*1.0/node[i].amount;
    			D=0;
    		}
    		i++;
    		if(i>=N)break;
    	}
    	printf("%.2lf
    ",sum);
    	return 0;
    }
    

      




  • 相关阅读:
    objectiveC中的序列化(serialize)与反序列化(deserialize)
    objectiveC 的代码文件组织
    [转载]Multicast Explained in Flash 10.1 P2P
    几种异步操作方式
    objectiveC 的内存管理之自动释放池(autorelease pool)
    用VS2010调试微软开放的部分源码
    浏览器窗口尺寸改变时的图片自动重新定位
    数据结构C#版笔记啥夫曼树(Huffman Tree)与啥夫曼编码(Huffman Encoding)
    objectiveC 的内存管理之实例分析
    objectiveC 的OOP(上)类定义、继承及方法调用
  • 原文地址:https://www.cnblogs.com/grglym/p/7856108.html
Copyright © 2011-2022 走看看