Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 35694 | Accepted: 14424 |
Description
The French author Georges Perec (1936–1982) once wrote a book, La disparition, without the letter 'e'. He was a member of the Oulipo group. A quote from the book:
Tout avait Pair normal, mais tout s’affirmait faux. Tout avait Fair normal, d’abord, puis surgissait l’inhumain, l’affolant. Il aurait voulu savoir où s’articulait l’association qui l’unissait au roman : stir son tapis, assaillant à tout instant son imagination, l’intuition d’un tabou, la vision d’un mal obscur, d’un quoi vacant, d’un non-dit : la vision, l’avision d’un oubli commandant tout, où s’abolissait la raison : tout avait l’air normal mais…
Perec would probably have scored high (or rather, low) in the following contest. People are asked to write a perhaps even meaningful text on some subject with as few occurrences of a given “word” as possible. Our task is to provide the jury with a program that counts these occurrences, in order to obtain a ranking of the competitors. These competitors often write very long texts with nonsense meaning; a sequence of 500,000 consecutive 'T's is not unusual. And they never use spaces.
So we want to quickly find out how often a word, i.e., a given string, occurs in a text. More formally: given the alphabet {'A', 'B', 'C', …, 'Z'} and two finite strings over that alphabet, a word W and a text T, count the number of occurrences of W in T. All the consecutive characters of W must exactly match consecutive characters of T. Occurrences may overlap.
Input
The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:
- One line with the word W, a string over {'A', 'B', 'C', …, 'Z'}, with 1 ≤ |W| ≤ 10,000 (here |W| denotes the length of the string W).
- One line with the text T, a string over {'A', 'B', 'C', …, 'Z'}, with |W| ≤ |T| ≤ 1,000,000.
Output
For every test case in the input file, the output should contain a single number, on a single line: the number of occurrences of the word W in the text T.
Sample Input
3 BAPC BAPC AZA AZAZAZA VERDI AVERDXIVYERDIAN
Sample Output
1 3 0
Source
题解:
kmp经典例题,因为题目说可压缩,所以末尾+1的失败指针指向1,1的失败指针指向0,就ok了。
1 #include<cstdio> 2 #include<cstring> 3 #include<iostream> 4 #include<algorithm> 5 #define maxn 1000000 6 7 using namespace std; 8 9 int next[maxn],n; 10 char W[maxn],T[maxn]; 11 12 void getnext() 13 { 14 int j=0,k=-1;next[0]=-1; 15 while (!j||W[j]!=0) 16 { 17 if (k==-1||W[j]==W[k]) 18 { 19 j++,k++; 20 if (W[j]!=W[k]) next[j]=k;else next[j]=next[k]; 21 }else k=next[k]; 22 } 23 } 24 25 int kmp() 26 { 27 int i=0,j=0,num=0; 28 memset(next,0,sizeof(next)); 29 int T_len=strlen(T),W_len=strlen(W); 30 getnext(); 31 while (i<T_len) 32 { 33 if (j==-1||T[i]==W[j]) i++,j++; 34 else j=next[j]; 35 if (j==W_len) 36 { 37 num++; 38 j=next[j]; 39 } 40 } 41 return num; 42 } 43 44 int main() 45 { 46 scanf("%d",&n); 47 for (int i=1;i<=n;i++) 48 { 49 scanf("%s%s",W,T); 50 printf("%d ",kmp()); 51 } 52 return 0; 53 } 54