题目大意
给出一个数字串,找出其中至少重复K次的最长的子串长度。
题目分析
直接用后缀数组来求解,限制height[i]的长度来对排好序的后缀进行分组(这种方法经常在字符串问题中被使用)。
先判断是否有至少K个长度大于等于M的子串,这可以通过将height[i] >= M来对排好序的后缀进行分组,然后判断组内串的个数是否大于等于K来实现。
然后,用二分法得到最大的M。
实现(c++)
#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<string.h>
#define LETTERS 1000005
#define MAX_ARRAY_SIZE 1000005
int gSuffixArray[MAX_ARRAY_SIZE];
int gCount[MAX_ARRAY_SIZE];
int gOrderBySecondKey[MAX_ARRAY_SIZE];
int gRank[MAX_ARRAY_SIZE];
int gFirstKeyArray[MAX_ARRAY_SIZE];
int gHeight[MAX_ARRAY_SIZE];
int gStr[MAX_ARRAY_SIZE];
int gStrLen;
bool Compare(int* arr, int a, int b, int step){
return arr[a] == arr[b] && arr[a + step] == arr[b + step];
}
void GetStr(char* str){
memset(gStr, 0, sizeof(gStr));
gStrLen = strlen(str);
for (int i = 0; i < gStrLen; i++){
gStr[i] = str[i] - 'a' + 1;
}
gStr[gStrLen] = 0;
gStrLen++;
}
//求后缀数组
void GetSuffixArray(){
int n = gStrLen;
memset(gCount, 0, sizeof(gCount));
for (int i = 0; i < n; i++){
gRank[i] = gStr[i];
gCount[gRank[i]] ++;
}
int m = LETTERS;
for (int i = 1; i < m; i++){
gCount[i] += gCount[i - 1];
}
for (int i = n - 1; i >= 0; i--){
gSuffixArray[--gCount[gRank[i]]] = i;
}
int step = 1;
int *rank = gRank, *order_by_second_key = gOrderBySecondKey;
while (step < n){
int p = 0;
for (int i = n - step; i < n; i++){
order_by_second_key[p++] = i;
}
for (int i = 0; i < n; i++){
if (gSuffixArray[i] >= step){
order_by_second_key[p++] = gSuffixArray[i] - step;
}
}
for (int i = 0; i < n; i++){
gFirstKeyArray[i] = rank[order_by_second_key[i]];
}
for (int i = 0; i < m; i++){
gCount[i] = 0;
}
for (int i = 0; i < n; i++){
gCount[gFirstKeyArray[i]] ++;
}
for (int i = 1; i < m; i++){
gCount[i] += gCount[i - 1];
}
for (int i = n - 1; i >= 0; i--){
gSuffixArray[--gCount[gFirstKeyArray[i]]] = order_by_second_key[i];
}
int* tmp = rank; rank = order_by_second_key; order_by_second_key = tmp;
rank[gSuffixArray[0]] = p = 0;
for (int i = 1; i < n; i++){
if (Compare(order_by_second_key, gSuffixArray[i], gSuffixArray[i - 1], step)){
rank[gSuffixArray[i]] = p;
}
else{
rank[gSuffixArray[i]] = ++p;
}
}
m = p + 1;
step *= 2;
}
}
//求height数组
void GetHeight(){
int n = gStrLen;
for (int i = 0; i < n; i++){
gRank[gSuffixArray[i]] = i;
}
int k = 0, j;
for (int i = 0; i < n; i++){
if (k){
k--;
}
j = gSuffixArray[gRank[i] - 1];
while (j + k < n && i + k < n&& gStr[i + k] == gStr[j + k]){
k++;
}
gHeight[gRank[i]] = k;
}
}
bool Find(int k, int len){
int end = 1;
int count = 0;
while (end < gStrLen){
count = 1;
while (end < gStrLen && gHeight[end] >= len){
count++;
end++;
}
if (count >= k){
return true;
}
end++;
}
return false;
}
int main(){
int n, k;
scanf("%d %d", &n, &k);
for (int i = 0; i < n; i++){
scanf("%d", &gStr[i]); gStr[i]++;
}
gStr[n] = 0;
gStrLen = n + 1;
if (k == 1){
printf("%d
", n);
return 0;
}
GetSuffixArray();
GetHeight();
int beg = 0, end = n;
while (beg < end){
int mid = (beg + end) / 2;
if (Find(k, mid)){
beg = mid + 1;
}
else{
end = mid;
}
}
printf("%d
", beg-1);
return 0;
}