zoukankan      html  css  js  c++  java
  • 拉格朗日乘子法

    1 拉格朗日乘子法基本概念

    拉格朗日乘子法是在约束条件$g(x_1,x_2,...)=0$下,计算函数$f(x_1,x_2,...)$极值的方法。

    以二元函数为例,约束条件为$g(x,y)=0$,求函数$f(x,y)$的极值,定义一个新的函数$F(x,y,lambda)=f(x,y)+lambda g(x,y)$,求此函数的极值。

    极值的第一个条件是,函数的偏导为0,即有:$frac{partial F}{partial x}=0$,$frac{partial F}{partial y}=0$,$frac{partial F}{partial lambda}=0$,求出$x、y、lambda$的值后,即可求值函数的极值。

    2 约束条件定义

    在有约束条件下,求函数极值要表示为以下形式:

    $$egin{cases}
    minf(x)\
    s.t. g_i(x)<0,i=1,2,...,q\
    h_j(x)=0,j=q+1,q+2,...,m\
    xin D
    end{cases}$$

    其中$f(x$为目标函数,$g(x)$为不等式约束,$h(x)$为等式约束。

    若$f(x),g(x),h(x)$均为线性函数,则该问题为线性优化问题,若其中一个为非线性,则称为非线性优化问题。

    若$f(x)$为二次函数,约束全为线性函数,则称为二次优化问题。

    2.1 等式约束条件

    在等式约束条件下,目标函数取得极小值时,目标函数的梯度与等式约束条件的梯度相等,有:

    $$ abla_Xf(X^*)=mu abla_Xh(X^*)$$

    同时,满足$h(x)=0$,即可构造拉格朗日函数$L(X,mu)=f(X)+mu h(X)$。

    求函数的极值转化为 :

    $$
    abla_XL(X^*,mu^*)=0\
    abla_mu L(X^*,mu^*)=0
    $$

    此条件是凸优化的解,如果是非凸函数,则还要加一个条件:

    $y^t( abla_{xx}^2L(x^*,mu^*))ge 0 forall y s.t. abla_xh(X^*)^ty=0$,此条件是一个正定条件。

    2.2 不等式约束条件

    等式$h(x)=0$在平面上画一条等高线,而不等式$g(x)ge 0$在在平面上圈出一块区域,称为可行域。

    函数极值与可行域的关系有两种,一种是极值在可行域范围内,另一种是极值在可行域范围外。

     2.2.1 极值点在可行域内

    这种情况下,不等式约束不起作用,$f(x)$的极值就是新函数$L(X,mu)$的极值。

    2.2.2 极值点在可行域外

    这种情况下,不等式约束是有效的,$f(x)$的极值不再是新函数$L(X,mu)$的极值,要考虑$f(x)$,在可行域内的极值。

    这时$f(x)$的梯度与$g(x)$的负梯度相同,如图所示。

    这时有$- abla_xf(x)=lambda abla_xg(x)quad andquad lambdagt 0$

    3 KKT条件

    上述过程中,不等式约束条件下凸函数极值三个条件:梯度为0、$lambdagt 0$、$lambda^*g(x^*)=0$构成了KKT三个条件。

    $$egin{cases}
    1. abla_xL(x^*,lambda^*)=0 qquad 梯度为0\
    2. lambda^*ge0 qquadqquad lambdagt 0\
    3. lambda^*g(x^*)=0 qquad 在g(x)=0(切线)处取得极值,极值在约束函数的边界
    end{cases}$$

    在非凸函数时,需要增加其他额外的条件。

    参考了博客园的一篇博客。 

  • 相关阅读:
    C# GridView使用 与 DataList分页。
    如何禁止服务器端口 135 137 3389等
    页面自动刷新 与 隔时刷新
    彻底解决网页图片只能另存为无标题bmp位图
    C# Byte[]数组转化为string类型.其实很简单.
    vs2003打开时报错。尝试创建 Web 项目或打开位于..
    Discuz! 在线人数,发帖数,修改。
    点击文本框出现时间选择器DateJs
    一张有转折意义的神秘地图
    中断异常的处理
  • 原文地址:https://www.cnblogs.com/guesswhy/p/11277327.html
Copyright © 2011-2022 走看看