一 、isinstance(obj,cls)和issubclass(sub,super)
isinstance(obj,cls)检查是否obj是否是类 cls 的对象
class Foo(object): pass obj = Foo() print(isinstance(obj, Foo))
issubclass(sub, super)检查sub类是否是 super 类的派生类(子类)
class Foo(object): pass class Bar(Foo): pass print(issubclass(Bar, Foo))
二、__getattribute__
class Foo: def __init__(self,x): self.x=x def __getattribute__(self, item): print('不管是否存在,我都会执行') f1=Foo(10) f1.x f1.xxxxxx
#_*_coding:utf-8_*_ __author__ = 'Linhaifeng' class Foo: def __init__(self,x): self.x=x def __getattr__(self, item): print('执行的是我') # return self.__dict__[item] def __getattribute__(self, item): print('不管是否存在,我都会执行') raise AttributeError('哈哈') f1=Foo(10) f1.x f1.xxxxxx #当__getattribute__与__getattr__同时存在,只会执行__getattrbute__,除非__getattribute__在执行过程中抛出异常AttributeError
1.不管调用的属性存不存在,都会触发__getattribute__(self, item) 最后抛出raise AttributeError('哈哈') ,然后__getattr__(self, item) 接住了这个异常,开始执行。
三、描述符(__get__,__set__,__delete__)
1 描述符是什么:描述符本质就是一个新式类,在这个新式类中,至少实现了__get__(),__set__(),__delete__()中的一个,这也被称为描述符协议
__get__():调用一个属性时,触发
__set__():为一个属性赋值时,触发
__delete__():采用del删除属性时,触发
class Foo: #在python3中Foo是新式类,它实现了三种方法,这个类就被称作一个描述符 def __get__(self, instance, owner): pass def __set__(self, instance, value): pass def __delete__(self, instance): pass
2 描述符是干什么的:描述符的作用是用来代理另外一个类的属性的(必须把描述符定义成这个类的类属性,不能定义到构造函数中)
class Foo: def __get__(self, instance, owner): print('触发get') def __set__(self, instance, value): print('触发set') def __delete__(self, instance): print('触发delete') #包含这三个方法的新式类称为描述符,由这个类产生的实例进行属性的调用/赋值/删除,并不会触发这三个方法 f1=Foo() f1.name='egon' f1.name del f1.name #疑问:何时,何地,会触发这三个方法的执行
3 描述符分两种
一 数据描述符:至少实现了__get__()和__set__()
class Foo: def __set__(self, instance, value): print('set') def __get__(self, instance, owner): print('get')
二 非数据描述符:没有实现__set__()
class Foo: def __get__(self, instance, owner): print('get')
4 注意事项:
一 描述符本身应该定义成新式类,被代理的类也应该是新式类
二 必须把描述符定义成这个类的类属性,不能为定义到构造函数中
三 要严格遵循该优先级,优先级由高到底分别是
1.类属性
2.数据描述符
3.实例属性
4.非数据描述符
5.找不到的属性触发__getattr__()
#描述符Str class Str: def __get__(self, instance, owner): print('Str调用') def __set__(self, instance, value): print('Str设置...') def __delete__(self, instance): print('Str删除...') class People: name=Str() def __init__(self,name,age): #name被Str类代理,age被Int类代理, self.name=name self.age=age #基于上面的演示,我们已经知道,在一个类中定义描述符它就是一个类属性,存在于类的属性字典中,而不是实例的属性字典 #那既然描述符被定义成了一个类属性,直接通过类名也一定可以调用吧,没错 People.name #恩,调用类属性name,本质就是在调用描述符Str,触发了__get__() People.name='egon' #那赋值呢,我去,并没有触发__set__() del People.name #赶紧试试del,我去,也没有触发__delete__() #结论:描述符对类没有作用-------->傻逼到家的结论 ''' 原因:描述符在使用时被定义成另外一个类的类属性,因而类属性比二次加工的描述符伪装而来的类属性有更高的优先级 People.name #恩,调用类属性name,找不到就去找描述符伪装的类属性name,触发了__get__() People.name='egon' #那赋值呢,直接赋值了一个类属性,它拥有更高的优先级,相当于覆盖了描述符,肯定不会触发描述符的__set__() del People.name #同上 '''
#描述符Str class Str: def __get__(self, instance, owner): print('Str调用') def __set__(self, instance, value): print('Str设置...') def __delete__(self, instance): print('Str删除...') class People: name=Str() def __init__(self,name,age): #name被Str类代理,age被Int类代理, self.name=name self.age=age p1=People('egon',18) #如果描述符是一个数据描述符(即有__get__又有__set__),那么p1.name的调用与赋值都是触发描述符的操作,于p1本身无关了,相当于覆盖了实例的属性 p1.name='egonnnnnn' p1.name print(p1.__dict__)#实例的属性字典中没有name,因为name是一个数据描述符,优先级高于实例属性,查看/赋值/删除都是跟描述符有关,与实例无关了 del p1.name
class Foo: def func(self): print('我胡汉三又回来了') f1=Foo() f1.func() #调用类的方法,也可以说是调用非数据描述符 #函数是一个非数据描述符对象(一切皆对象么) print(dir(Foo.func)) print(hasattr(Foo.func,'__set__')) print(hasattr(Foo.func,'__get__')) print(hasattr(Foo.func,'__delete__')) #有人可能会问,描述符不都是类么,函数怎么算也应该是一个对象啊,怎么就是描述符了 #笨蛋哥,描述符是类没问题,描述符在应用的时候不都是实例化成一个类属性么 #函数就是一个由非描述符类实例化得到的对象 #没错,字符串也一样 f1.func='这是实例属性啊' print(f1.func) del f1.func #删掉了非数据 f1.func()
class Foo: def __set__(self, instance, value): print('set') def __get__(self, instance, owner): print('get') class Room: name=Foo() def __init__(self,name,width,length): self.name=name self.width=width self.length=length #name是一个数据描述符,因为name=Foo()而Foo实现了get和set方法,因而比实例属性有更高的优先级 #对实例的属性操作,触发的都是描述符的 r1=Room('厕所',1,1) r1.name r1.name='厨房' class Foo: def __get__(self, instance, owner): print('get') class Room: name=Foo() def __init__(self,name,width,length): self.name=name self.width=width self.length=length #name是一个非数据描述符,因为name=Foo()而Foo没有实现set方法,因而比实例属性有更低的优先级 #对实例的属性操作,触发的都是实例自己的 r1=Room('厕所',1,1) r1.name r1.name='厨房'
class Foo: def func(self): print('我胡汉三又回来了') def __getattr__(self, item): print('找不到了当然是来找我啦',item) f1=Foo() f1.xxxxxxxxxxx
四、__setitem__,__getitem,__delitem__
class Foo: def __init__(self,name): self.name=name def __getitem__(self, item): print(self.__dict__[item]) def __setitem__(self, key, value): self.__dict__[key]=value def __delitem__(self, key): print('del obj[key]时,我执行') self.__dict__.pop(key) def __delattr__(self, item): print('del obj.key时,我执行') self.__dict__.pop(item) f1=Foo('sb') f1['age']=18 f1['age1']=19 del f1.age1 del f1['age'] f1['name']='alex' print(f1.__dict__)
五、__str__,__repr__,__format__
改变对象的字符串显示__str__,__repr__
自定制格式化字符串__format__
#_*_coding:utf-8_*_ __author__ = 'Linhaifeng' format_dict={ 'nat':'{obj.name}-{obj.addr}-{obj.type}',#学校名-学校地址-学校类型 'tna':'{obj.type}:{obj.name}:{obj.addr}',#学校类型:学校名:学校地址 'tan':'{obj.type}/{obj.addr}/{obj.name}',#学校类型/学校地址/学校名 } class School: def __init__(self,name,addr,type): self.name=name self.addr=addr self.type=type def __repr__(self): return 'School(%s,%s)' %(self.name,self.addr) def __str__(self): return '(%s,%s)' %(self.name,self.addr) def __format__(self, format_spec): # if format_spec if not format_spec or format_spec not in format_dict: format_spec='nat' fmt=format_dict[format_spec] return fmt.format(obj=self) s1=School('oldboy1','北京','私立') print('from repr: ',repr(s1)) print('from str: ',str(s1)) print(s1) ''' str函数或者print函数--->obj.__str__() repr或者交互式解释器--->obj.__repr__() 如果__str__没有被定义,那么就会使用__repr__来代替输出 注意:这俩方法的返回值必须是字符串,否则抛出异常 ''' print(format(s1,'nat')) print(format(s1,'tna')) print(format(s1,'tan')) print(format(s1,'asfdasdffd'))
date_dic={ 'ymd':'{0.year}:{0.month}:{0.day}', 'dmy':'{0.day}/{0.month}/{0.year}', 'mdy':'{0.month}-{0.day}-{0.year}', } class Date: def __init__(self,year,month,day): self.year=year self.month=month self.day=day def __format__(self, format_spec): if not format_spec or format_spec not in date_dic: format_spec='ymd' fmt=date_dic[format_spec] return fmt.format(self) d1=Date(2016,12,29) print(format(d1)) print('{:mdy}'.format(d1))
class A: pass class B(A): pass print(issubclass(B,A)) #B是A的子类,返回True a1=A() print(isinstance(a1,A)) #a1是A的实例
六、__slots__
1.__slots__是什么:是一个类变量,变量值可以是列表,元祖,或者可迭代对象,也可以是一个字符串(意味着所有实例只有一个数据属性)
2.引子:使用点来访问属性本质就是在访问类或者对象的__dict__属性字典(类的字典是共享的,而每个实例的是独立的)
3.为何使用__slots__:字典会占用大量内存,如果你有一个属性很少的类,但是有很多实例,为了节省内存可以使用__slots__取代实例的__dict__
当你定义__slots__后,__slots__就会为实例使用一种更加紧凑的内部表示。实例通过一个很小的固定大小的数组来构建,而不是为每个实例定义一个
字典,这跟元组或列表很类似。在__slots__中列出的属性名在内部被映射到这个数组的指定小标上。使用__slots__一个不好的地方就是我们不能再给
实例添加新的属性了,只能使用在__slots__中定义的那些属性名。
4.注意事项:__slots__的很多特性都依赖于普通的基于字典的实现。另外,定义了__slots__后的类不再 支持一些普通类特性了,比如多继承。大多数情况下,你应该
只在那些经常被使用到 的用作数据结构的类上定义__slots__比如在程序中需要创建某个类的几百万个实例对象 。
关于__slots__的一个常见误区是它可以作为一个封装工具来防止用户给实例增加新的属性。尽管使用__slots__可以达到这样的目的,但是这个并不是它的初衷。 更多的是用来作为一个内存优化工具。
class Foo: __slots__='x' f1=Foo() f1.x=1 f1.y=2#报错 print(f1.__slots__) #f1不再有__dict__ class Bar: __slots__=['x','y'] n=Bar() n.x,n.y=1,2 n.z=3#报错
class Foo: __slots__=['name','age'] f1=Foo() f1.name='alex' f1.age=18 print(f1.__slots__) f2=Foo() f2.name='egon' f2.age=19 print(f2.__slots__) print(Foo.__dict__) #f1与f2都没有属性字典__dict__了,统一归__slots__管,节省内存
七、__next__和__iter__实现迭代器协议
#_*_coding:utf-8_*_ __author__ = 'Linhaifeng' class Foo: def __init__(self,x): self.x=x def __iter__(self): return self def __next__(self): n=self.x self.x+=1 return self.x f=Foo(3) for i in f: print(i)
class Foo: def __init__(self,start,stop): self.num=start self.stop=stop def __iter__(self): return self def __next__(self): if self.num >= self.stop: raise StopIteration n=self.num self.num+=1 return n f=Foo(1,5) from collections import Iterable,Iterator print(isinstance(f,Iterator)) for i in Foo(1,5): print(i)
class Fib: def __init__(self): self._a=0 self._b=1 def __iter__(self): return self def __next__(self): self._a,self._b=self._b,self._a + self._b return self._a f1=Fib() print(f1.__next__()) print(next(f1)) print(next(f1)) for i in f1: if i > 100: break print('%s ' %i,end='')
八、__doc__
class Foo: '我是描述信息' pass class Bar(Foo): pass print(Bar.__doc__) #该属性无法继承给子类
九、__del__
析构方法,当对象在内存中被释放时,自动触发执行。
注:此方法一般无须定义,因为Python是一门高级语言,程序员在使用时无需关心内存的分配和释放,因为此工作都是交给Python解释器来执行,所以,析构函数的调用是由解释器在进行垃圾回收时自动触发执行的。
class Foo: def __del__(self): print('执行我啦') f1=Foo() del f1 print('------->') #输出结果 执行我啦 -------> #删除实例才会触发,删除实例属性不会触发(文件执行完毕,f1被回收,也会触发)
十、__call__
对象后面加括号,触发执行。
注:构造方法的执行是由创建对象触发的,即:对象 = 类名() ;而对于 __call__ 方法的执行是由对象后加括号触发的,即:对象() 或者 类()()
class Foo: def __init__(self): pass def __call__(self, *args, **kwargs): print('__call__') obj = Foo() # 执行 __init__ obj() # 执行 __call__