zoukankan      html  css  js  c++  java
  • LCA(Lowest Common Ancesor)

    LCA(Lowest Common Ancesor)

    1.基于二分搜索算法

    预处理father[v][k]表示v的2的k次方层祖先,时间复杂度是O(nlogn),每次查询的时间复杂度是O(logn),预处理2k表的技巧在LCA之外也会用到。用链式前向星存图,相对vector邻接表要快。
    一次dfs预处理出全部点的父亲结点,然后用2分思想,处理出每个点的2的k次方的父亲结点,对于LCA核心算法,首先把深度较深的移动到与另外一个水平,然后两个结点一起移动,但他们的父亲结点不同时,先上移动,最后返回当前结点的父亲结点。

    1.1 Nearest Common Ancestors POJ - 1330

    在有根树下,求任意两个结点的LCA,首先找到根节点,以这个结点为起点dfs,预处理出所有结点的父节点。

    链式前向星存

    #include<iostream>
    #include<cstring>
    #include<cmath>
    #define mem(a,x) memset(a,x,sizeof(a))
    using namespace std;
    const int N = 1e4 + 5;
    int fa[N][15];
    int head[N];
    int vis[N];
    int cur;
    int depth[N];
    bool Du[N];
    int ans[N];
    int n;
    struct Edge {
    	int to;
    	int nex;
    }edge[N];
    void AddEdge(int u, int v) {
    	edge[cur].to = v;
    	edge[cur].nex = head[u];
    	head[u] = cur++;
    }
    void init() {
    	mem(head, -1);
    	mem(fa, 0);
    	mem(Du, 0);
    	mem(depth, 0);
    	cur = 0;
    }
    void dfs(int v, int p, int d) {
    	fa[v][0] = p;
    	depth[v] = d;
    	for (int i = head[v]; i != -1; i = edge[i].nex) {
    		dfs(edge[i].to, v, d + 1);
    	}
    }
    int LCA(int s, int t) {
    	if (depth[s] < depth[t])
    		swap(s, t);
    	int temp = depth[s] - depth[t];
    	for (int i = 0; (1 << i) <= temp; i++)
    	{
    		if ((1<<i)&temp)
    			s = fa[s][i];
    	}
    	if (s == t)return s;
    	for (int i = (int)log2(n*1.0); i >= 0; i--) {
    		if (fa[s][i] != fa[t][i]) {
    			s = fa[s][i];
    			t = fa[t][i];
    		}
    	}
    	return fa[s][0];
    }
    int main()
    {
    	int T, s, t, root;
    	cin >> T;
    	while (T--)
    	{
    		init();
    		cin >> n;
    		for (int i = 0; i < n - 1; i++) {
    			cin >> s >> t;
    			AddEdge(s, t);
    			Du[t] = 1;
    		}
    		for (int i = 1; i <= n; i++){
    			if (Du[i] == 0){
    				root = i;
    				break;
    			}
    		}
    		dfs(root, -1, 0);
    		for (int j = 0; (1 << (j + 1)) < n; j++) {
    			for (int i = 1; i <= n; i++) {
    				if (fa[i][j] < 0)
    					fa[i][j + 1] = -1;
    				else fa[i][j + 1] = fa[fa[i][j]][j];
    			}
    		}
    		cin >> s >> t;
    		cout << LCA(s, t) << endl;
    	}
    }
    

    连接表存

    #include<iostream>
    #include<cstring>
    #include<cmath>
    #include<vector>
    #define mem(a,x) memset(a,x,sizeof(a))
    using namespace std;
    const int N = 1e4 + 5;
    int father[N][15];
    int depth[N];
    int Du[N];
    int max_log;
    struct  Node{
    	vector<int>G;
    };
    Node tree[N];
     void dfs(int v, int p, int d) {
    	 father[v][0] = p;
    	 depth[v] = d;
    	 for (int i = 0; i < tree[v].G.size(); i++) {
    		 if (tree[v].G[i] != p)dfs(tree[v].G[i], v, d + 1);
    	 }
    }
    void init() {
    	memset(Du, 0, sizeof(Du));
    	//for (int i = 0; i < 15; i++)G[i].clear();
    	memset(tree, 0, sizeof(tree));
    	memset(depth, 0, sizeof(depth));
    	memset(father, 0, sizeof(father));
    }
    int LCA(int u, int v) {
    	if (depth[u]>depth[v])swap(u, v);
    	int temp = depth[v] - depth[u];
    	for (int i = 0; (1 << i) <= temp; i++) {
    		if ((1 << i)&temp) {//如果temp是1011,1分别左移1,2,3,4位,与temp&,如果当前temp在i为1,说明可以提高i位
    			v= father[v][i];//depth[v]大,先将v提高与u水平
    		}
    	}
    	if (u == v)return u;
    	for (int i = max_log; i >= 0; i--) {
    		if (father[u][i] != father[v][i]) {
    			u = father[u][i];
    			v = father[v][i];
    		}
    	}
    	return father[u][0];
    }
    int main() {
    	int T, s, t, root;
    	cin >> T;
    	while (T--)
    	{
    	
    		int n;
    		cin >> n;
    		init();
    		max_log = int(log2(1.0*n));
    		for (int i = 0; i < n - 1; i++) {
    			cin >> s >> t;
    			tree[s].G.push_back(t);
    			Du[t] = 1;
    		}
    		for (int i = 1; i <= n; i++) {
    			if (Du[i] == 0) {
    				root = i;
    				break;
    			}
    		}
    		dfs(root, -1, 0);
    		for (int j = 0; (1 << (j + 1)) < n; j++) {
    			for (int i = 1; i <= n; i++) {
    				if (father[i][j] < 0)
    					father[i][j + 1] = -1;
    				else father[i][j + 1] = father[father[i][j]][j];
    			}
    		}
    		cin >> s >> t;
    		cout << LCA(s, t) << endl;
    	}
    	return 0;
    }
    

    树上最短距离Factory HDU - 6115

    暴力LCA

    #define _CRT_SECURE_NO_WARNINGS
    #include<iostream>
    #include<cstring>
    #include<cmath>
    #include<algorithm>
    #include<vector>
    #define mem(a,x) memset(a,x,sizeof(a))
    const int INF = 0x3f3f3f3f;
    using namespace std;
    const int N = 100010;
    int fa[N][25];
    int head[N];
    int cur;
    int depth[N];
    int dis[N];//到根节点的距离
    vector<int>vec[N];
    int n,m;
    struct Edge {
    	int to;
    	int cost;
    	int nex;
    }edge[2*N];
    //edge[i].to表示第i条边的终点,edge[i].nex表示与第i条边同起点的下一条边的存储位置,edge[i].cost为边权值.
    //head[i]保存的是以i为起点的所有边中编号最大的那个, 而把这个当作顶点i的第一条起始边的位置
    void AddEdge(int u, int v, int w) {
    	edge[cur].to = v;
    	edge[cur].cost = w;
    	edge[cur].nex = head[u];
    	head[u] = cur++;
    }
    void init() {
    	mem(head, -1);
    	mem(fa, 0);
    	mem(depth, 0);
    	mem(dis, 0);
    	cur = 0;
    }
    void dfs(int v, int p, int d,int cost) {
    	fa[v][0] = p;
    	depth[v] = d;
    	dis[v] = cost;
    	for (int i = head[v]; i != -1; i = edge[i].nex) {
    		if(!depth[edge[i].to])//无向图
    		dfs(edge[i].to, v, d + 1,dis[v]+edge[i].cost);
    	}
    }
    /*
    void dfs(int v, int f, int cost)
    {
    	dis[v] = cost;
    	for (int i = head[v]; i != -1; i = edge[i].nex)
    	{
    		int u = edge[i].to;
    		if (u == f) continue;
    		if (!depth[u])
    			depth[u] = depth[v] + 1, fa[u][0] = v, dfs(u, v, dis[v] + edge[i].cost);
    	}
    }
    */
    int LCA(int s, int t) {
    	if (depth[s] < depth[t])
    		swap(s, t);
    	int temp = depth[s] - depth[t];
    	for (int i = 0; (1 << i) <= temp; i++)
    	{
    		if ((1 << i)&temp)
    			s = fa[s][i];
    	}
    	if (s == t)return s;
    	for (int i = (int)log2(n*1.0); i >= 0; i--) {
    		if (fa[s][i] != fa[t][i]) {
    			s = fa[s][i];
    			t = fa[t][i];
    		}
    	}
    	return fa[s][0];
    }
    int main()
    {
    	int T, s, t,w, root;
    	scanf("%d", &T);
    	while (T--)
    	{
    		init();
    		scanf("%d%d", &n, &m);
    		for (int i = 0; i < n - 1; i++) {
    			scanf("%d%d%d", &s, &t, &w);
    			AddEdge(s, t,w);
    			AddEdge(t, s, w);
    			//Du[t] = 1;
    		}
    		//找到根节点
    
    		for (int i = 1; i <= m; i++)
    		{
    			int num, v;
    			scanf("%d", &num);
    			for (int j = 1; j <= num; j++)
    			{
    				scanf("%d", &v);
    				vec[i].push_back(v);
    			}
    		}
    		//选择1为根
    		dfs(1, -1,0,0);
    		for (int j = 0; (1 << (j + 1)) < n; j++) {
    			for (int i = 1; i <= n; i++) {
    				if (fa[i][j] < 0)
    					fa[i][j + 1] = -1;
    				else fa[i][j + 1] = fa[fa[i][j]][j];
    			}
    		}
    		int q;
    		scanf("%d",&q);
    		for (int i = 1; i <= q; i++)
    		{
    			int v, u, ans = INF;
    			scanf("%d%d", &v, &u);
    			for (int j = 0; j < vec[v].size(); j++)
    				for (int  k = 0; k < vec[u].size(); k++)
    					ans = min(ans, dis[vec[v][j]] + dis[vec[u][k]] - dis[LCA(vec[v][j], vec[u][k])] * 2);
    			printf("%d
    ", ans);
    		}
    		for (int i = 1; i <= m; i++) vec[i].clear();
    	}
    	return 0;
    }
    
    不疯魔不成活
  • 相关阅读:
    常用Linux基础命令
    makefile基础
    获得当前的时间——system.currentTimeMillis()
    MapReduce提供的输入输出格式
    Hadoop HDFS文件操作的Java代码
    Hadoop2.2.0完全分布式配置
    Hadoop2.2.0伪分布模式配置
    Eclipse Plugin for Hadoop2.2.0
    Hadoop2.2.0单机模式配置
    Asp.Net 禁用cookie后使用session
  • 原文地址:https://www.cnblogs.com/gzr2018/p/10305724.html
Copyright © 2011-2022 走看看