[bzoj1096][ZJOI2007]仓库建设
标签: DP 斜率优化
题解
首先要秒写出dp方程
[dp[i]=max(dp[j]+sum_{k=j+1}^i p[k](x[i]-x[k]))
]
[令sp[n]=sum_{i=1}^n p[i],s[n]=sum_{i=1}^n x[i]×p[i]
]
[方程可简写为dp[i]=max(dp[j]+x[i]×(sp[i]-sp[j])-(s[i]-s[j]))
]
(设i从j转移过来,取k满足j< k)
[dp[j]+x[i](sp[i]-sp[j])-(s[i]-s[j])< dp[k]+x[i](sp[i]-sp[j])-(s[i]-s[k])
]
[化简,得dp[j]-dp[k]+s[j]-s[k]< x[i](sp[j]-sp[k])
]
[frac{dp[j]-dp[k]+s[j]-s[k]}{sp[j]-sp[k]}>x[i]
]
斜率优化即可。
Code
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<set>
#include<map>
using namespace std;
#define ll long long
#define REP(i,a,b) for(int i=(a),_end_=(b);i<=_end_;i++)
#define DREP(i,a,b) for(int i=(a),_end_=(b);i>=_end_;i--)
#define EREP(i,a) for(int i=start[(a)];i;i=e[i].next)
inline int read()
{
int sum=0,p=1;char ch=getchar();
while(!(('0'<=ch && ch<='9') || ch=='-'))ch=getchar();
if(ch=='-')p=-1,ch=getchar();
while('0'<=ch && ch<='9')sum=sum*10+ch-48,ch=getchar();
return sum*p;
}
const int maxn=1e6+20;
int n;
ll x[maxn],sp[maxn],s[maxn],c[maxn],p[maxn];
ll dp[maxn];
void init()
{
n=read();
REP(i,1,n)
{
x[i]=read();p[i]=read();c[i]=read();
sp[i]=sp[i-1]+p[i];
s[i]=s[i-1]+x[i]*p[i];
}
}
double count(int j,int k)
{
return (double)(dp[j]-dp[k]+s[j]-s[k])/(sp[j]-sp[k]);
}
int q[maxn],head,tail;
void doing()
{
head=1;tail=1;
REP(i,1,n)
{
while(head<tail && count(q[head],q[head+1])<x[i])head++;
int xx=q[head];
dp[i]=dp[xx]+x[i]*(sp[i]-sp[xx])-s[i]+s[xx]+c[i];
while(head<tail && count(q[tail-1],q[tail])>count(q[tail],i))tail--;
q[++tail]=i;
}
printf("%lld
",dp[n]);
}
int main()
{
freopen("factory.in","r",stdin);
freopen("factory.out","w",stdout);
init();
doing();
return 0;
}