zoukankan      html  css  js  c++  java
  • 699. Falling Squares

    On an infinite number line (x-axis), we drop given squares in the order they are given.

    The i-th square dropped (positions[i] = (left, side_length)) is a square with the left-most point being positions[i][0] and sidelength positions[i][1].

    The square is dropped with the bottom edge parallel to the number line, and from a higher height than all currently landed squares. We wait for each square to stick before dropping the next.

    The squares are infinitely sticky on their bottom edge, and will remain fixed to any positive length surface they touch (either the number line or another square). Squares dropped adjacent to each other will not stick together prematurely.

    Return a list ans of heights. Each height ans[i] represents the current highest height of any square we have dropped, after dropping squares represented by positions[0], positions[1], ..., positions[i].

    Example 1:

    Input: [[1, 2], [2, 3], [6, 1]]
    Output: [2, 5, 5]
    Explanation:

    After the first drop of positions[0] = [1, 2]: _aa _aa ------- The maximum height of any square is 2.

    After the second drop of positions[1] = [2, 3]: __aaa __aaa __aaa _aa__ _aa__ -------------- The maximum height of any square is 5. The larger square stays on top of the smaller square despite where its center of gravity is, because squares are infinitely sticky on their bottom edge.

    After the third drop of positions[1] = [6, 1]: __aaa __aaa __aaa _aa _aa___a -------------- The maximum height of any square is still 5. Thus, we return an answer of [2, 5, 5].

    Example 2:

    Input: [[100, 100], [200, 100]]
    Output: [100, 100]
    Explanation: Adjacent squares don't get stuck prematurely - only their bottom edge can stick to surfaces.
    

    Note:

    • 1 <= positions.length <= 1000.
    • 1 <= positions[i][0] <= 10^8.
    • 1 <= positions[i][1] <= 10^6.

    Approach #1: C++. [Brute Force]

    class Solution {
    public:
        vector<int> fallingSquares(vector<pair<int, int>>& positions) {
            vector<int> ans;
            vector<Interval> intervals;
            int maxHeight = INT_MIN;
            for (const auto& it : positions) {
                int start = it.first;
                int end = start + it.second;
                int baseHeight = 0;
                for (const auto& it : intervals) {
                    if (start >= it.end || end <= it.start) {
                        continue;
                    }
                    baseHeight = max(baseHeight, it.height);
                }
                int height = it.second + baseHeight;
                maxHeight = max(maxHeight, height);
                intervals.push_back(Interval(start, end, height));
                ans.push_back(maxHeight);
            }
            return ans;
        }
        
    private:
        struct Interval {
            int start;
            int end;
            int height;
            Interval(int start, int end, int height)
                : start(start), end(end), height(height) {}
        };
    };
    

      

    Approach #2: C++. [Using Map]

    class Solution {
    public:
        vector<int> fallingSquares(vector<pair<int, int>>& positions) {
            vector<int> ans;
            map<pair<int, int>, int> b;
            int maxHeight = INT_MIN;
            for (const auto& kv : positions) {
                int start = kv.first;
                int size = kv.second;
                int end = start + size;
                
                auto it = b.upper_bound({start, end});
                
                if (it != b.begin()) {
                    auto it2 = it;
                    if ((--it2)->first.second > start)
                        it = it2;
                } 
                
                int baseHeight = 0;
                vector<tuple<int, int, int>> ranges;
                
                while (it != b.end() && it->first.first < end) {
                    const int s = it->first.first;
                    const int e = it->first.second;
                    const int h = it->second;
                    
                    if (s < start) ranges.emplace_back(s, start, h);
                    if (e > end) ranges.emplace_back(end, e, h);
                    
                    baseHeight = max(baseHeight, h);
                    it = b.erase(it);
                }
                
                int newHeight = size + baseHeight;
                
                b[{start, end}] = newHeight;
                
                for (const auto& range : ranges) {
                    b[{get<0>(range), get<1>(range)}] = get<2>(range);
                }
                
                maxHeight = max(maxHeight, newHeight);
                ans.push_back(maxHeight);
            }
            return ans;
        }
    };
    

      

    Notes:

    1. tuples in c++.

     Approach #3: Java. [segment tree]

    class Solution {
        public List<Integer> fallingSquares(int[][] positions) {
            int n = positions.length;
            Map<Integer, Integer> cc = coorCompression(positions);
            int best = 0;
            List<Integer> res = new ArrayList<>();
            SegmentTree tree = new SegmentTree(cc.size());
            for (int[] pos : positions) {
                int L = cc.get(pos[0]);
                int R = cc.get(pos[0] + pos[1] - 1);
                int h = tree.query(L, R) + pos[1];
                tree.update(L, R, h);
                best = Math.max(best, h);
                res.add(best);
            }
            return res;
        }
        
        private Map<Integer, Integer> coorCompression(int[][] positions) {
            Set<Integer> set = new HashSet<>();
            for (int[] pos : positions) {
                set.add(pos[0]);
                set.add(pos[0] + pos[1] - 1);
            }
            List<Integer> list = new ArrayList<>(set);
            Collections.sort(list);
            Map<Integer, Integer> map = new HashMap<>();
            int t = 0;
            for (int pos : list) map.put(pos, t++);
            return map;
        }
        
        class SegmentTree {
            int[] tree;
            int N;
            
            SegmentTree(int N) {
                this.N = N;
                int n = (1 << ((int) Math.ceil(Math.log(N) / Math.log(2)) + 1));
                tree = new int[n];
            }
            
            public int query(int L, int R) {
                return queryUtil(1, 0, N - 1, L, R);
            }
            
            private int queryUtil(int index, int s, int e, int L, int R) {
                // out of range
                if (s > e || s > R || e < L) {
                    return 0;
                }
                // [L, R] cover [s, e]
                if (s >= L && e <= R) {
                    return tree[index];
                }
                // Overlapped
                int mid = s + (e - s) / 2;
                return Math.max(queryUtil(2 * index, s, mid, L, R), queryUtil(2 * index + 1, mid + 1, e, L, R));
            }
            
            public void update(int L, int R, int h) {
                updateUtil(1, 0, N - 1, L, R, h);
            }
            
            private void updateUtil(int index, int s, int e, int L, int R, int h) {
                // out of range
                if (s > e || s > R || e < L) {
                    return;
                }
                tree[index] = Math.max(tree[index], h);
                if (s != e) {
                    int mid = s + (e - s) / 2;
                    updateUtil(2 * index, s, mid, L, R, h);
                    updateUtil(2 * index + 1, mid + 1, e, L, R, h);
                }
            }
        }
    }
    

      

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    Android Preference 实现长按监听 longclickable
    表达式求值
    二分图大讲堂——彻底搞定最大匹配数(最小覆盖数)、最大独立数、最小路径覆盖、带权最优匹配
    poj 1806
    树的公共祖先问题LCA
    给定两个长度相同,分别有序的数组A和B,求两个数组中所有数的中位数
    网络爬虫基本原理(转载)
    atoi函数的实现
    一个天平,12个大小,外观相同的球,一个球的重量与其他的不同,称3次找出问题小球
    动态规划求RMQ(区间最值问题Range Minimum/Maximum Query)
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10050490.html
Copyright © 2011-2022 走看看