Implement a MyCalendarThree class to store your events. A new event can always be added.
Your class will have one method, book(int start, int end). Formally, this represents a booking on the half open interval [start, end), the range of real numbers x such that start <= x < end.
A K-booking happens when K events have some non-empty intersection (ie., there is some time that is common to all K events.)
For each call to the method MyCalendar.book, return an integer K representing the largest integer such that there exists a K-booking in the calendar.
Your class will be called like this: MyCalendarThree cal = new MyCalendarThree(); MyCalendarThree.book(start, end)
Example 1:
MyCalendarThree(); MyCalendarThree.book(10, 20); // returns 1 MyCalendarThree.book(50, 60); // returns 1 MyCalendarThree.book(10, 40); // returns 2 MyCalendarThree.book(5, 15); // returns 3 MyCalendarThree.book(5, 10); // returns 3 MyCalendarThree.book(25, 55); // returns 3 Explanation: The first two events can be booked and are disjoint, so the maximum K-booking is a 1-booking. The third event [10, 40) intersects the first event, and the maximum K-booking is a 2-booking. The remaining events cause the maximum K-booking to be only a 3-booking. Note that the last event locally causes a 2-booking, but the answer is still 3 because eg. [10, 20), [10, 40), and [5, 15) are still triple booked.
Note:
- The number of calls to
MyCalendarThree.bookper test case will be at most400. - In calls to
MyCalendarThree.book(start, end),startandendare integers in the range[0, 10^9].
Approach #1: C++.
class MyCalendarThree {
public:
MyCalendarThree() {
}
int book(int start, int end) {
++books[start];
--books[end];
int count = 0;
int ant = 0;
for (auto it : books) {
count += it.second;
ant = max(ant, count);
if (it.first > end) break;
}
maxNum = max(maxNum, ant);
return maxNum;
}
private:
map<int, int> books;
int maxNum = 0;
};
Approach #2: C++.
class MyCalendarThree {
public:
MyCalendarThree() {
books[INT_MAX] = 0;
books[INT_MIN] = 0;
maxCount = 0;
}
int book(int start, int end) {
auto l = prev(books.upper_bound(start));
auto r = books.lower_bound(end);
for (auto curr = l, next = curr; curr != r; curr = next) {
++next;
if (next->first > end)
books[end] = curr->second;
if (curr->first <= start && next->first > start) {
maxCount = max(maxCount, books[start] = curr->second+1);
}
else {
maxCount = max(maxCount, ++curr->second);
}
}
return maxCount;
}
private:
map<int, int> books;
int maxCount;
};
Note:
Approach #3: C++. [segment tree]
...........