zoukankan      html  css  js  c++  java
  • 407. Trapping Rain Water II

    Given an m x n matrix of positive integers representing the height of each unit cell in a 2D elevation map, compute the volume of water it is able to trap after raining.

    Note:

    Both m and n are less than 110. The height of each unit cell is greater than 0 and is less than 20,000.

    Example:

    Given the following 3x6 height map:
    [
      [1,4,3,1,3,2],
      [3,2,1,3,2,4],
      [2,3,3,2,3,1]
    ]
    
    Return 4.
    

    The above image represents the elevation map [[1,4,3,1,3,2],[3,2,1,3,2,4],[2,3,3,2,3,1]] before the rain.

    After the rain, water is trapped between the blocks. The total volume of water trapped is 4.

    Approach #1: C++. [priority_queue]

    class Solution {
    public:
        int trapRainWater(vector<vector<int>>& heightMap) {
            if (heightMap.size() == 0) return 0;
            int row = heightMap.size(), col = heightMap[0].size();
            vector<vector<int>> visited(row, vector<int>(col, 0));
            priority_queue<pair<int, pair<int, int>>, vector<pair<int, pair<int, int>>>, greater<pair<int, pair<int, int>>>> pq;
            
            for (int i = 0; i < col; ++i) {
                pq.push({heightMap[0][i], {0, i}});
                pq.push({heightMap[row-1][i], {row-1, i}});
                visited[0][i] = 1;
                visited[row-1][i] = 1;
            }
            
            for (int i = 1; i < row-1; ++i) {
                pq.push({heightMap[i][0], {i, 0}});
                pq.push({heightMap[i][col-1], {i, col-1}});
                visited[i][0] = 1;
                visited[i][col-1] = 1;
            }
            
            int ans = 0;
            int curMaxHeight = 0;
            
            while (!pq.empty()) {
                pair<int, pair<int, int>> cur = pq.top();
                pq.pop();
                curMaxHeight = max(curMaxHeight, cur.first);
                int x = cur.second.first, y = cur.second.second;
                for (auto dir : dirs) {
                    int xx = x + dir.first;
                    int yy = y + dir.second;
                    if (judge(xx, yy, heightMap) && visited[xx][yy] == 0) {
                        pq.push({heightMap[xx][yy], {xx, yy}});
                        visited[xx][yy] = 1;
                        if (heightMap[xx][yy] < curMaxHeight) {
                            ans += curMaxHeight - heightMap[xx][yy];
                        }
                    }
                }
            }
            
            return ans;
        }
        
    private:
        vector<pair<int, int>> dirs = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
        static bool judge(int x, int y, vector<vector<int>>& heightMap) {
            int m = heightMap.size();
            int n = heightMap[0].size();
            if (x < 0 || x >= m || y < 0 || y >= n) return false;
            else return true;
        }
    };
    

      

    Analysis:

    The problem is very typical of this similar questions.

    Firstly, we use a priority_queue to store the bordars cells.

    Secondly, we access to the top-first elements and record the maximum height in the top-first elements from start to now.

    Thirdly, traveling current top-first element's top, left, right and bottom cells, if the position if vaild and the cell's height is less then the maximum height, then we use maximum height to subtract the cell's value, and add the difference to the ans.

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    kmp
    RMP
    p次方求和
    河南省之6 Metric Matrice
    表达式求值
    线段树
    办公软件试题
    河南省之6 遥控器
    三个水杯
    JLink + USBTO232 MINI作品
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10151233.html
Copyright © 2011-2022 走看看