zoukankan      html  css  js  c++  java
  • 787. Cheapest Flights Within K Stops

    There are n cities connected by m flights. Each fight starts from city and arrives at v with a price w.

    Now given all the cities and flights, together with starting city src and the destination dst, your task is to find the cheapest price from src to dst with up to k stops. If there is no such route, output -1.

    Example 1:
    Input: 
    n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]]
    src = 0, dst = 2, k = 1
    Output: 200
    Explanation: 
    The graph looks like this:
    

    The cheapest price from city 0 to city 2 with at most 1 stop costs 200, as marked red in the picture.
    Example 2:
    Input: 
    n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]]
    src = 0, dst = 2, k = 0
    Output: 500
    Explanation: 
    The graph looks like this:
    

    The cheapest price from city 0 to city 2 with at most 0 stop costs 500, as marked blue in the picture.

    Note:

    • The number of nodes n will be in range [1, 100], with nodes labeled from 0 to n - 1.
    • The size of flights will be in range [0, n * (n - 1) / 2].
    • The format of each flight will be (src, dst, price).
    • The price of each flight will be in the range [1, 10000].
    • k is in the range of [0, n - 1].
    • There will not be any duplicated flights or self cycles.

    Approach #1: C++. []DFS

    class Solution {
    public:
        int findCheapestPrice(int n, vector<vector<int>>& flights, int src, int dst, int K) {
            unordered_map<int, vector<pair<int, int>>> graph;
            for (auto flight : flights) {
                int s = flight[0], e = flight[1], p = flight[2];
                graph[s].push_back(make_pair(e, p));
            }
            unordered_set<int> seen;
            dfs(graph, seen, src, dst, K, 0, 0);
            return ans == INT_MAX ? -1 : ans;
        }
        
        void dfs(unordered_map<int, vector<pair<int, int>>>& graph, unordered_set<int> seen, int src, int dst, int K, int t, int p) {
            if (t > K+1) return ;
            if (src == dst) {
                ans = p;
                return ;
            }
            
            seen.insert(src);
            
            for (auto v : graph[src]) 
                if (!seen.count(v.first) && p + v.second < ans) 
                    dfs(graph, seen, v.first, dst, K, t+1, p+v.second);
    
        }
        
    private:
        int ans = INT_MAX;
        
    };
    

      

    Analysis:

    In this solution, The important point is p + v.second < ans.  

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    Android中 requestCode与resultCode的区别与用法
    Activity与Fragment之间的通信
    关于解决 从相册中选择照片后无法剪切图片以及无法加载图片的问题
    Codeforces Round #313 (Div. 2) C. Geralds Hexagon
    HDU 2669 Romantic
    HDU 1405 The Last Practice
    HDU Wolf and Rabbit
    LightOJ 1104 Birthday Paradox
    11181
    Tr A
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10160736.html
Copyright © 2011-2022 走看看