zoukankan      html  css  js  c++  java
  • 787. Cheapest Flights Within K Stops

    There are n cities connected by m flights. Each fight starts from city and arrives at v with a price w.

    Now given all the cities and flights, together with starting city src and the destination dst, your task is to find the cheapest price from src to dst with up to k stops. If there is no such route, output -1.

    Example 1:
    Input: 
    n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]]
    src = 0, dst = 2, k = 1
    Output: 200
    Explanation: 
    The graph looks like this:
    

    The cheapest price from city 0 to city 2 with at most 1 stop costs 200, as marked red in the picture.
    Example 2:
    Input: 
    n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]]
    src = 0, dst = 2, k = 0
    Output: 500
    Explanation: 
    The graph looks like this:
    

    The cheapest price from city 0 to city 2 with at most 0 stop costs 500, as marked blue in the picture.

    Note:

    • The number of nodes n will be in range [1, 100], with nodes labeled from 0 to n - 1.
    • The size of flights will be in range [0, n * (n - 1) / 2].
    • The format of each flight will be (src, dst, price).
    • The price of each flight will be in the range [1, 10000].
    • k is in the range of [0, n - 1].
    • There will not be any duplicated flights or self cycles.

    Approach #1: C++. []DFS

    class Solution {
    public:
        int findCheapestPrice(int n, vector<vector<int>>& flights, int src, int dst, int K) {
            unordered_map<int, vector<pair<int, int>>> graph;
            for (auto flight : flights) {
                int s = flight[0], e = flight[1], p = flight[2];
                graph[s].push_back(make_pair(e, p));
            }
            unordered_set<int> seen;
            dfs(graph, seen, src, dst, K, 0, 0);
            return ans == INT_MAX ? -1 : ans;
        }
        
        void dfs(unordered_map<int, vector<pair<int, int>>>& graph, unordered_set<int> seen, int src, int dst, int K, int t, int p) {
            if (t > K+1) return ;
            if (src == dst) {
                ans = p;
                return ;
            }
            
            seen.insert(src);
            
            for (auto v : graph[src]) 
                if (!seen.count(v.first) && p + v.second < ans) 
                    dfs(graph, seen, v.first, dst, K, t+1, p+v.second);
    
        }
        
    private:
        int ans = INT_MAX;
        
    };
    

      

    Analysis:

    In this solution, The important point is p + v.second < ans.  

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    Tomcat学习总结(12)—— Tomcat集群配置
    Tomcat学习总结(11)——Linux下的Tomcat安全优化
    Tomcat学习总结(10)——Tomcat多实例冗余部署
    Tomcat学习总结(9)——Apache Tomcat 8新特性
    Tomcat学习总结(8)——Tomcat+Nginx集群解决均衡负载及生产环境热部署
    Tomcat学习总结(7)——Tomcat与Jetty比较
    C# ORM框架
    C# 模拟windows文件名称排序(使用windows自带dll)
    C#递归删除进程及其子进程
    python 下划线转驼峰
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10160736.html
Copyright © 2011-2022 走看看