zoukankan      html  css  js  c++  java
  • 874. Walking Robot Simulation

    A robot on an infinite grid starts at point (0, 0) and faces north.  The robot can receive one of three possible types of commands:

    • -2: turn left 90 degrees
    • -1: turn right 90 degrees
    • 1 <= x <= 9: move forward x units

    Some of the grid squares are obstacles. 

    The i-th obstacle is at grid point (obstacles[i][0], obstacles[i][1])

    If the robot would try to move onto them, the robot stays on the previous grid square instead (but still continues following the rest of the route.)

    Return the square of the maximum Euclidean distance that the robot will be from the origin.

    Example 1:

    Input: commands = [4,-1,3], obstacles = []
    Output: 25
    Explanation: robot will go to (3, 4)
    

    Example 2:

    Input: commands = [4,-1,4,-2,4], obstacles = [[2,4]]
    Output: 65
    Explanation: robot will be stuck at (1, 4) before turning left and going to (1, 8)
    

    Note:

    1. 0 <= commands.length <= 10000
    2. 0 <= obstacles.length <= 10000
    3. -30000 <= obstacle[i][0] <= 30000
    4. -30000 <= obstacle[i][1] <= 30000
    5. The answer is guaranteed to be less than 2 ^ 31.

    Approach #1: C++.

    class Solution {
    public:
        int robotSim(vector<int>& commands, vector<vector<int>>& obstacles) {
            vector<pair<int, int>> dirs = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};
            int x = 0, y = 0, di = 0;
            int ans = 0;
            
            set<pair<int, int>> obstacleSet;
            for (auto obstacle : obstacles) 
                obstacleSet.insert(make_pair(obstacle[0], obstacle[1]));
            
            for (int command : commands) {
                if (command == -2) {
                    di = (di + 3) % 4;
                } else if (command == -1) {
                    di = (di + 1) % 4;
                } else {
                    for (int i = 0; i < command; ++i) {
                        int nx = x + dirs[di].first;
                        int ny = y + dirs[di].second;
                        if (obstacleSet.find(make_pair(nx, ny)) == obstacleSet.end()) {
                            x = nx;
                            y = ny;
                            ans = max(ans, x*x + y*y);
                        }
                    }
                }
            }
            return ans;
        }
    };
    

      

    Analysis:

    If we know the relation of the directions and turn, it will become easier.

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    Unique Binary Search Trees 解答
    Unique Paths II 解答
    Unique Paths 解答
    Maximum Subarray 解答
    Climbing Stairs 解答
    House Robber II 解答
    House Robber 解答
    Valid Palindrome 解答
    Container With Most Water 解答
    Remove Duplicates from Sorted List II 解答
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10311975.html
Copyright © 2011-2022 走看看