zoukankan      html  css  js  c++  java
  • 874. Walking Robot Simulation

    A robot on an infinite grid starts at point (0, 0) and faces north.  The robot can receive one of three possible types of commands:

    • -2: turn left 90 degrees
    • -1: turn right 90 degrees
    • 1 <= x <= 9: move forward x units

    Some of the grid squares are obstacles. 

    The i-th obstacle is at grid point (obstacles[i][0], obstacles[i][1])

    If the robot would try to move onto them, the robot stays on the previous grid square instead (but still continues following the rest of the route.)

    Return the square of the maximum Euclidean distance that the robot will be from the origin.

    Example 1:

    Input: commands = [4,-1,3], obstacles = []
    Output: 25
    Explanation: robot will go to (3, 4)
    

    Example 2:

    Input: commands = [4,-1,4,-2,4], obstacles = [[2,4]]
    Output: 65
    Explanation: robot will be stuck at (1, 4) before turning left and going to (1, 8)
    

    Note:

    1. 0 <= commands.length <= 10000
    2. 0 <= obstacles.length <= 10000
    3. -30000 <= obstacle[i][0] <= 30000
    4. -30000 <= obstacle[i][1] <= 30000
    5. The answer is guaranteed to be less than 2 ^ 31.

    Approach #1: C++.

    class Solution {
    public:
        int robotSim(vector<int>& commands, vector<vector<int>>& obstacles) {
            vector<pair<int, int>> dirs = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};
            int x = 0, y = 0, di = 0;
            int ans = 0;
            
            set<pair<int, int>> obstacleSet;
            for (auto obstacle : obstacles) 
                obstacleSet.insert(make_pair(obstacle[0], obstacle[1]));
            
            for (int command : commands) {
                if (command == -2) {
                    di = (di + 3) % 4;
                } else if (command == -1) {
                    di = (di + 1) % 4;
                } else {
                    for (int i = 0; i < command; ++i) {
                        int nx = x + dirs[di].first;
                        int ny = y + dirs[di].second;
                        if (obstacleSet.find(make_pair(nx, ny)) == obstacleSet.end()) {
                            x = nx;
                            y = ny;
                            ans = max(ans, x*x + y*y);
                        }
                    }
                }
            }
            return ans;
        }
    };
    

      

    Analysis:

    If we know the relation of the directions and turn, it will become easier.

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    重拾安卓_01_安卓开发环境搭建(eclipse)
    重拾安卓_01_安卓开发环境搭建(android studio)
    【BZOJ】1038: [ZJOI2008]瞭望塔
    【BZOJ】2178: 圆的面积并
    【UR #4】元旦三侠的游戏(博弈论+记忆化)
    【BZOJ】1027: [JSOI2007]合金(凸包+floyd)
    【POJ】1151 Atlantis(线段树)
    【POJ】1228 Grandpa's Estate(凸包)
    【POJ】1556 The Doors(计算几何基础+spfa)
    【POJ】1113 Wall(凸包)
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10311975.html
Copyright © 2011-2022 走看看