zoukankan      html  css  js  c++  java
  • 874. Walking Robot Simulation

    A robot on an infinite grid starts at point (0, 0) and faces north.  The robot can receive one of three possible types of commands:

    • -2: turn left 90 degrees
    • -1: turn right 90 degrees
    • 1 <= x <= 9: move forward x units

    Some of the grid squares are obstacles. 

    The i-th obstacle is at grid point (obstacles[i][0], obstacles[i][1])

    If the robot would try to move onto them, the robot stays on the previous grid square instead (but still continues following the rest of the route.)

    Return the square of the maximum Euclidean distance that the robot will be from the origin.

    Example 1:

    Input: commands = [4,-1,3], obstacles = []
    Output: 25
    Explanation: robot will go to (3, 4)
    

    Example 2:

    Input: commands = [4,-1,4,-2,4], obstacles = [[2,4]]
    Output: 65
    Explanation: robot will be stuck at (1, 4) before turning left and going to (1, 8)
    

    Note:

    1. 0 <= commands.length <= 10000
    2. 0 <= obstacles.length <= 10000
    3. -30000 <= obstacle[i][0] <= 30000
    4. -30000 <= obstacle[i][1] <= 30000
    5. The answer is guaranteed to be less than 2 ^ 31.

    Approach #1: C++.

    class Solution {
    public:
        int robotSim(vector<int>& commands, vector<vector<int>>& obstacles) {
            vector<pair<int, int>> dirs = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};
            int x = 0, y = 0, di = 0;
            int ans = 0;
            
            set<pair<int, int>> obstacleSet;
            for (auto obstacle : obstacles) 
                obstacleSet.insert(make_pair(obstacle[0], obstacle[1]));
            
            for (int command : commands) {
                if (command == -2) {
                    di = (di + 3) % 4;
                } else if (command == -1) {
                    di = (di + 1) % 4;
                } else {
                    for (int i = 0; i < command; ++i) {
                        int nx = x + dirs[di].first;
                        int ny = y + dirs[di].second;
                        if (obstacleSet.find(make_pair(nx, ny)) == obstacleSet.end()) {
                            x = nx;
                            y = ny;
                            ans = max(ans, x*x + y*y);
                        }
                    }
                }
            }
            return ans;
        }
    };
    

      

    Analysis:

    If we know the relation of the directions and turn, it will become easier.

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    运维自动化工具 Kickstart
    Ansible 运维自动化 ( 配置管理工具 )
    Redis 主从同步配置
    MONGO db INSTALLATION
    Innobackupex MySQL 全备、增备及恢复
    strace 使用
    LCD硬件原理
    多点触摸_电容屏驱动程序_实践_tiny4412
    单点触摸屏与多点触摸屏的异同
    多点触摸屏——电容屏驱动程序
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10311975.html
Copyright © 2011-2022 走看看