Given an array A of 0s and 1s, divide the array into 3 non-empty parts such that all of these parts represent the same binary value.
If it is possible, return any [i, j] with i+1 < j, such that:
A[0], A[1], ..., A[i]is the first part;A[i+1], A[i+2], ..., A[j-1]is the second part, andA[j], A[j+1], ..., A[A.length - 1]is the third part.- All three parts have equal binary value.
If it is not possible, return [-1, -1].
Note that the entire part is used when considering what binary value it represents. For example, [1,1,0] represents 6 in decimal, not 3. Also, leading zeros are allowed, so [0,1,1] and [1,1] represent the same value.
Example 1:
Input: [1,0,1,0,1]
Output: [0,3]
Example 2:
Input: [1,1,0,1,1]
Output: [-1,-1]
Note:
3 <= A.length <= 30000A[i] == 0orA[i] == 1
class Solution {
public:
vector<int> threeEqualParts(vector<int>& A) {
int size = A.size();
int countOfOne = 0;
for (auto c : A)
if (c == 1)
countOfOne++;
// if there don't have 1 in the vector
if (countOfOne == 0)
return {0, size-1};
// if the count of one is not a multiple of 3, then we can never find a possible partition since
//there will be at least one partion that will have difference number of one hence different binary
//representation
//For example, given:
//0000110 110 110
// | | |
// i j
//Total number of ones = 6
if (countOfOne%3 != 0)
return {-1, -1};
int k = countOfOne / 3;
int i;
for (i = 0; i < size; ++i)
if (A[i] == 1)
break;
int begin = i;
int temp = 0;
for (i = 0; i < size; ++i) {
if (A[i] == 1)
temp++;
if (temp == k + 1)
break;
}
int mid = i;
temp = 0;
for (i = 0; i < size; ++i) {
if (A[i] == 1)
temp++;
if (temp == 2*k+1)
break;
}
int end = i;
while (end < size && A[begin] == A[mid] && A[mid] == A[end]) {
begin++, mid++, end++;
}
if (end == size)
return {begin-1, mid};
else
return {-1, -1};
}
};