zoukankan      html  css  js  c++  java
  • SVM python 代码实现

    from numpy import *
    
    
    class Model(object):
    
        def __init__(self, X, y, C, toler, kernel_param):
            self.X = X
            self.y = y
            self.C = C
            self.toler = toler
            self.kernel_param = kernel_param
            self.m = shape(X)[0]
            self.mapped_data = mat(zeros((self.m, self.m)))
            for i in range(self.m):
                self.mapped_data[:, i] = gaussian_kernel(self.X, X[i, :], self.kernel_param)
            self.E = mat(zeros((self.m, 2)))
            self.alphas = mat(zeros((self.m, 1)))
            self.b = 0
    
    
    def load_data(filename):
        X = []
        y = []
        with open(filename, 'r') as fd:
            for line in fd.readlines():
                nums = line.strip().split(',')
                X_temp = []
                for i in range(len(nums)):
                    if i == len(nums) - 1:
                        y.append(float(nums[i]))
                    else:
                        X_temp.append(float(nums[i]))
                X.append(X_temp)
        return mat(X), mat(y)
    
    def gaussian_kernel(X, l, kernel_param): 
        sigma = kernel_param 
        m = shape(X)[0]
        mapped_data = mat(zeros((m, 1)))
        for i in range(m):
            mapped_data[i] = exp(-sum((X[i, :] - l).T * (X[i, :] - l) / (2 * sigma ** 2)))
        return mapped_data
    
    def clip_alpha(L, H, alpha):
        if alpha > H:
            alpha = H
        elif alpha < L:
            alpha = L
        return alpha
    
    def calc_b(b1, b2):
        return (b1 + b2) / 2
    
    def calc_E(i, model):
        yi = float(model.y[i])
        gxi = float(multiply(model.alphas, model.y).T * model.mapped_data[:, i] + model.b)
        Ei = gxi - yi
        return Ei
    
    def select_j(Ei, i, model):
        nonzero_indices = nonzero(model.E[:, 0].A)[0]
        Ej = 0
        j = 0
        max_delta = 0
        if len(nonzero_indices) > 1:
            for index in nonzero_indices:
                if index == i:
                    continue
                E_temp = calc_E(index, model)
                delta = abs(E_temp - Ei)
                if delta > max_delta:
                    max_delta = delta
                    Ej = E_temp
                    j = index
        else:
            j = i
            while j == i:
                j = int(random.uniform(0, model.m))
            Ej = calc_E(j, model)
        return j, Ej
    
    def iterate(i, model):
        yi = model.y[i]
        Ei = calc_E(i, model)
        model.E[i] = [1, Ei]
        # 如果alpahi不满足KKT条件, 则进行之后的操作, 选择alphaj, 更新alphai与alphaj, 还有b
        if (yi * Ei > model.toler and model.alphas[i] > 0) or (yi * Ei < -model.toler and model.alphas[i] < model.C):
            # alphai不满足KKT条件
            # 选择alphaj
            j, Ej = select_j(Ei, i, model)
            yj = model.y[j] 
            alpha1old = model.alphas[i].copy()
            alpha2old = model.alphas[j].copy()
            eta = model.mapped_data[i, i] + model.mapped_data[j, j] - 2 * model.mapped_data[i, j]   
            if eta <= 0:
                return 0
            alpha2new_unclip = alpha2old + yj * (Ei - Ej) / eta
            if yi == yj:
                L = max(0, alpha2old + alpha1old - model.C)
                H = min(model.C, alpha1old + alpha2old)
            else:
                L = max(0, alpha2old - alpha1old)
                H = min(model.C, model.C - alpha1old + alpha2old)
            if L == H:
                return 0
            alpha2new = clip_alpha(L, H, alpha2new_unclip)
            if abs(alpha2new - alpha2old) < 0.00001:
               return 0
            alpha1new = alpha1old + yi * yj * (alpha2old - alpha2new)
            b1new = -Ei - yi * model.mapped_data[i, i] * (alpha1new - alpha1old) 
                    - yj * model.mapped_data[j, i] * (alpha2new - alpha2old) + model.b
            b2new = -Ej - yi * model.mapped_data[i, j] * (alpha1new - alpha1old) 
                    - yj * model.mapped_data[j, j] * (alpha2new - alpha2old) + model.b
            model.b = calc_b(b1new, b2new)
            model.alphas[i] = alpha1new
            model.alphas[j] = alpha2new
            model.E[i] = [1, calc_E(i, model)]
            model.E[j] = [1, calc_E(j, model)]
            return 1
        return 0
    
    def smo(X, y, C, toler, iter_num, kernel_param):
        model = Model(X, y.T, C, toler, kernel_param)
        changed_alphas = 0
        current_iter = 0
        for i in range(model.m):
            changed_alphas += iterate(i, model)
            print("iter:%d i:%d,pairs changed %d"
                  %(current_iter, i, changed_alphas))
        current_iter += 1
        print('start...') 
        while current_iter < iter_num and changed_alphas > 0:
            changed_alphas = 0
            # 处理支持向量
            alphas_indice = nonzero((model.alphas.A > 0) * (model.alphas.A < C))[0]
            for i in alphas_indice:
                changed_alphas += iterate(i, model)
                print("iter:%d i:%d,pairs changed %d"
                      %(current_iter, i, changed_alphas))
            current_iter += 1
        return model.alphas, model.b
  • 相关阅读:
    java判断一个字符串是否包含某个字符
    Java去掉Html标签的方法
    如何转换成utf-8格式的,在jsp页面中正常显示换行
    a标签设置手型
    a标签置灰不可点击
    校验手机号码格式
    用JQuery 判断某个属性是否存在hasAttr的解决方法
    验证手机号码 (包含166和199)
    获取短信验证码倒计时
    Noisy Channel模型纠正单词拼写错误
  • 原文地址:https://www.cnblogs.com/haiboxiaobai/p/13663769.html
Copyright © 2011-2022 走看看