zoukankan      html  css  js  c++  java
  • PYXFIB

    思路:

    $sumlimits_{i=0}^{lfloor frac{n}{k} floor} C_{n}^{i*k} * F_{i*k}$

    $=sumlimits_{i=0}^{n} C_{n}^{i}*F_{i}*[k|i]$

    然后应该思考$[k|i]$的性质

    在看看题目,发现了一个奇奇怪怪的条件:$(k|(p-1))$

    这个还是比较容易联系到原根的

    那我们试图用一个包含$原根,i,k$的式子表示出$[k|i]$

    大胆尝试:$[k|i]=sumlimits_{j=0}^{k-1} omega^{ij}/k$

    当$[k|i]=0$时,我们希望找到一个最高项为$omega^{r*k-1}$的等比序列,这样可以使$frac{1-omega^{r*k}}{1-d}=0$

    当$[k|i]=1$时,可以利用原根的性质使得每1项都为1

    然后我们就可以继续往下推式子了

    $Ans=sumlimits_{i=0}^{n} C_{n}^{i}*F_{i}*[k|i]$

    $=frac{1}{k}sumlimits_{i=0}^{n} C_{n}^{i}*F_{i}*sumlimits_{j=0}^{k-1} omega^{ij}$

    $=frac{1}{k}sumlimits_{i=0}^{n} C_{n}^{i}*A^{i}[0][0]*sumlimits_{j=0}^{k-1} omega^{ij} space space 然后配方$

    $=frac{1}{k}sumlimits_{j=0}^{k-1} omega^{ij} * sumlimits_{i=0}^{n} C_{n}^{i}*A^{i}[0][0]$

    $=frac{1}{k}sumlimits_{j=0}^{k-1} sumlimits_{i=0}^{n} C_{n}^{i}*A^{i}[0][0]*omega^{(-i)*(-j)}$

    设$x=omega^{-j}$

    $则Ans=frac{1}{k}sumlimits_{j=0}^{k-1} sumlimits_{i=0}^{n} C_{n}^{i}*A^{i}[0][0]*x^{-i}$

    $=frac{1}{k}sumlimits_{j=0}^{k-1} x^{-n}*sumlimits_{i=0}^{n} C_{n}^{i}*A^{i}[0][0]*x^{n-i}$

    $=frac{1}{k}sumlimits_{j=0}^{k-1} x^{-n}*(xI+A)^n$ 

    #include<bits/stdc++.h>
    #define maxn 100005
    #define maxm 500005
    #define inf 0x7fffffff
    #define ll long long
    #define rint register int
    #define debug(x) cerr<<#x<<": "<<x<<endl
    #define fgx cerr<<"--------------"<<endl
    #define rep(i,a,b) for(ll i=a;i<=b;i++)
    #define dgx cerr<<"=============="<<endl
    #define lowbit(x) (x&(-x))
    #define N 1000000
    #define MAXN 1000004
    using namespace std;
    inline ll read(){
    	ll x=0,f=1;
    	char ch=getchar();
    	while('0'>ch || ch>'9'){if(ch=='-') f=-1; ch=getchar();}
    	while('0'<=ch && ch<='9'){x=(x<<1)+(x<<3)+ch-'0'; ch=getchar();}
    	return x*f;
    }
    ll mod,n,k,Wn,w,book[MAXN],pre[MAXN],cnt,phi[MAXN];
    
    struct mac{
    	ll a[2][2];
    	mac(){a[0][0]=a[1][0]=a[0][1]=a[1][1]=0;}
    }A;
    mac pls(mac c,mac d){
    	rep(i,0,1) rep(j,0,1) c.a[i][j]=(c.a[i][j]+d.a[i][j])%mod;
    	return c;
    } 
    void print(mac gg){
    	cout<<"MAC:"<<endl;
    	rep(i,0,1){
    		rep(j,0,1) cout<<gg.a[i][j]<<" ";cout<<endl;
    	}
    }
    ll ksm(ll x,ll y){
    	ll res=1;
    	while(y){
    		if(y&1) res=(res*x)%mod;
    		x=(x*x)%mod;
    		y>>=1;
    	}
    	return res;
    }
    mac mul(mac x,mac y){
    	mac f;
    	rep(i,0,1){
    		rep(j,0,1){
    			rep(k,0,1){
    				f.a[i][j]+=x.a[i][k]*y.a[k][j]; f.a[i][j]%=mod;
    			}
    		}
    	}
    	return f;
    } 
    int get_root(int x) {
    	if(x<=2) return 1;
    	rep(i,2,x){
    		if(ksm(i,(x-1))!=1) continue;
    		bool zlk=0;
    		for(int j=2;j*j<=x-1;j++) if((x-1)%j==0 && (ksm(i,j)==1 || ksm(i,(x-1)/j)==1)){zlk=1; continue;}
    	    if(!zlk) return i;
    	}
    }
    void init(ll x){
    	A.a[0][0]=1+x; A.a[0][1]=1;
    	A.a[1][0]=1; A.a[1][1]=x;
    }
    mac mac_ksm(mac base,ll y){
    	mac res; res.a[0][0]=res.a[1][1]=1;
    	while(y){
    		if(y&1) res=mul(res,base);
    		base=mul(base,base);
    		y>>=1;
    	}
    	return res;
    }
    ll ans=0,sum=0;
    
    int main(){
    	int t=read(); 
        while(t--){
        	n=read(); k=read(); mod=read();
        	ll g=get_root(mod),gg;
        	w=1; sum=0;
        	ll omg=ksm(g,(mod-1)/k);
        	rep(i,0,k-1){
        		gg=ksm(omg,k-i);
        		init(gg);
        		mac pp=mac_ksm(A,n);
        		sum=(sum+pp.a[0][0]*ksm(omg,i*(n%k)))%mod;
    		}
    		ans=sum*ksm(k,mod-2)%mod;
    		printf("%lld
    ",ans);
    	}
    	return 0;
    }
    
  • 相关阅读:
    js 复制 浏览器 点击 copy
    php 百度地图 腾讯地图 转换坐标
    Excel PHP html select option 替换
    python教程
    Eclipse 总是在编译的时候卡住
    python+Eclipse+pydev环境搭建1
    python+Eclipse+pydev环境搭建
    Pycharm
    如何卸载eclipse中的pydev
    Eclipse的PyDev插件安装及解决安装后找不到的问题
  • 原文地址:https://www.cnblogs.com/handsome-zlk/p/14499022.html
Copyright © 2011-2022 走看看