思路:
$sumlimits_{i=0}^{lfloor frac{n}{k} floor} C_{n}^{i*k} * F_{i*k}$
$=sumlimits_{i=0}^{n} C_{n}^{i}*F_{i}*[k|i]$
然后应该思考$[k|i]$的性质
在看看题目,发现了一个奇奇怪怪的条件:$(k|(p-1))$
这个还是比较容易联系到原根的
那我们试图用一个包含$原根,i,k$的式子表示出$[k|i]$
大胆尝试:$[k|i]=sumlimits_{j=0}^{k-1} omega^{ij}/k$
当$[k|i]=0$时,我们希望找到一个最高项为$omega^{r*k-1}$的等比序列,这样可以使$frac{1-omega^{r*k}}{1-d}=0$
当$[k|i]=1$时,可以利用原根的性质使得每1项都为1
然后我们就可以继续往下推式子了
$Ans=sumlimits_{i=0}^{n} C_{n}^{i}*F_{i}*[k|i]$
$=frac{1}{k}sumlimits_{i=0}^{n} C_{n}^{i}*F_{i}*sumlimits_{j=0}^{k-1} omega^{ij}$
$=frac{1}{k}sumlimits_{i=0}^{n} C_{n}^{i}*A^{i}[0][0]*sumlimits_{j=0}^{k-1} omega^{ij} space space 然后配方$
$=frac{1}{k}sumlimits_{j=0}^{k-1} omega^{ij} * sumlimits_{i=0}^{n} C_{n}^{i}*A^{i}[0][0]$
$=frac{1}{k}sumlimits_{j=0}^{k-1} sumlimits_{i=0}^{n} C_{n}^{i}*A^{i}[0][0]*omega^{(-i)*(-j)}$
设$x=omega^{-j}$
$则Ans=frac{1}{k}sumlimits_{j=0}^{k-1} sumlimits_{i=0}^{n} C_{n}^{i}*A^{i}[0][0]*x^{-i}$
$=frac{1}{k}sumlimits_{j=0}^{k-1} x^{-n}*sumlimits_{i=0}^{n} C_{n}^{i}*A^{i}[0][0]*x^{n-i}$
$=frac{1}{k}sumlimits_{j=0}^{k-1} x^{-n}*(xI+A)^n$
#include<bits/stdc++.h> #define maxn 100005 #define maxm 500005 #define inf 0x7fffffff #define ll long long #define rint register int #define debug(x) cerr<<#x<<": "<<x<<endl #define fgx cerr<<"--------------"<<endl #define rep(i,a,b) for(ll i=a;i<=b;i++) #define dgx cerr<<"=============="<<endl #define lowbit(x) (x&(-x)) #define N 1000000 #define MAXN 1000004 using namespace std; inline ll read(){ ll x=0,f=1; char ch=getchar(); while('0'>ch || ch>'9'){if(ch=='-') f=-1; ch=getchar();} while('0'<=ch && ch<='9'){x=(x<<1)+(x<<3)+ch-'0'; ch=getchar();} return x*f; } ll mod,n,k,Wn,w,book[MAXN],pre[MAXN],cnt,phi[MAXN]; struct mac{ ll a[2][2]; mac(){a[0][0]=a[1][0]=a[0][1]=a[1][1]=0;} }A; mac pls(mac c,mac d){ rep(i,0,1) rep(j,0,1) c.a[i][j]=(c.a[i][j]+d.a[i][j])%mod; return c; } void print(mac gg){ cout<<"MAC:"<<endl; rep(i,0,1){ rep(j,0,1) cout<<gg.a[i][j]<<" ";cout<<endl; } } ll ksm(ll x,ll y){ ll res=1; while(y){ if(y&1) res=(res*x)%mod; x=(x*x)%mod; y>>=1; } return res; } mac mul(mac x,mac y){ mac f; rep(i,0,1){ rep(j,0,1){ rep(k,0,1){ f.a[i][j]+=x.a[i][k]*y.a[k][j]; f.a[i][j]%=mod; } } } return f; } int get_root(int x) { if(x<=2) return 1; rep(i,2,x){ if(ksm(i,(x-1))!=1) continue; bool zlk=0; for(int j=2;j*j<=x-1;j++) if((x-1)%j==0 && (ksm(i,j)==1 || ksm(i,(x-1)/j)==1)){zlk=1; continue;} if(!zlk) return i; } } void init(ll x){ A.a[0][0]=1+x; A.a[0][1]=1; A.a[1][0]=1; A.a[1][1]=x; } mac mac_ksm(mac base,ll y){ mac res; res.a[0][0]=res.a[1][1]=1; while(y){ if(y&1) res=mul(res,base); base=mul(base,base); y>>=1; } return res; } ll ans=0,sum=0; int main(){ int t=read(); while(t--){ n=read(); k=read(); mod=read(); ll g=get_root(mod),gg; w=1; sum=0; ll omg=ksm(g,(mod-1)/k); rep(i,0,k-1){ gg=ksm(omg,k-i); init(gg); mac pp=mac_ksm(A,n); sum=(sum+pp.a[0][0]*ksm(omg,i*(n%k)))%mod; } ans=sum*ksm(k,mod-2)%mod; printf("%lld ",ans); } return 0; }