zoukankan      html  css  js  c++  java
  • More Divisors(反素数)

    More Divisors

    Time Limit: 2 Seconds      Memory Limit: 65536 KB

    Everybody knows that we use decimal notation, i.e. the base of our notation is 10. Historians say that it is so because men have ten fingers. Maybe they are right. However, this is often not very convenient, ten has only four divisors -- 1, 2, 5 and 10. Thus, fractions like 1/3, 1/4 or 1/6 have inconvenient decimal representation. In this sense the notation with base 12, 24, or even 60 would be much more convenient.

    The main reason for it is that the number of divisors of these numbers is much greater -- 6, 8 and 12 respectively. A good quiestion is: what is the number not exceeding n that has the greatest possible number of divisors? This is the question you have to answer.

    Input:

    The input consists of several test cases, each test case contains a integer n (1 <= n <= 1016).

    Output:

    For each test case, output positive integer number that does not exceed n and has the greatest possible number of divisors in a line. If there are several such numbers, output the smallest one.

    Sample Input:

    10
    20
    100
    

    Sample Output:

    6
    12
    60
    
    题解:找小于等于n的因子个数最大的最小整数;

    代码:
    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<cmath>
    #include<vector>
    #include<algorithm>
    using namespace std;
    const double PI=acos(-1.0);
    #define SI(x) scanf("%d",&x)
    #define SL(x) scanf("%lld",&x)
    #define PI(x) printf("%d",x)
    #define PL(x) printf("%lld",x)
    #define T_T while(T--)
    #define P_ printf(" ")
    typedef unsigned long long uLL;
    const uLL INF=(uLL)~0;
    int prim[16]={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53};
    uLL n,ans;
    int nn;
    void dfs(int pos,uLL v,int num){
    	if(num==nn)ans=min(ans,v);
    	if(num>nn&&v<=n)nn=num,ans=v;
    	for(int i=1;i<=63;i++){
    		if(v*prim[pos]>n)break;
    		dfs(pos+1,v*=prim[pos],num*(i+1));
    	}
    }
    int main(){
    	while(~scanf("%llu",&n)){
    		nn=0;ans=INF;
    		dfs(0,1,1);
    		printf("%llu
    ",ans);
    	}
    	return 0;
    }
    

      


     
  • 相关阅读:
    Hbase shell基本操作
    Spring Caching集成Ehcache
    统一认证授权及单点登录的技术选择
    详谈再论JAVA获取本机IP地址
    Spark基础脚本入门实践3:Pair RDD开发
    Spark基础脚本入门实践2:基础开发
    Spark基础脚本入门实践1
    必须熟练的基础linux命令
    Swing中的线程并发处理
    源码分享!!!world文档转换为JPG图片
  • 原文地址:https://www.cnblogs.com/handsomecui/p/5017559.html
Copyright © 2011-2022 走看看