zoukankan      html  css  js  c++  java
  • More Divisors(反素数)

    More Divisors

    Time Limit: 2 Seconds      Memory Limit: 65536 KB

    Everybody knows that we use decimal notation, i.e. the base of our notation is 10. Historians say that it is so because men have ten fingers. Maybe they are right. However, this is often not very convenient, ten has only four divisors -- 1, 2, 5 and 10. Thus, fractions like 1/3, 1/4 or 1/6 have inconvenient decimal representation. In this sense the notation with base 12, 24, or even 60 would be much more convenient.

    The main reason for it is that the number of divisors of these numbers is much greater -- 6, 8 and 12 respectively. A good quiestion is: what is the number not exceeding n that has the greatest possible number of divisors? This is the question you have to answer.

    Input:

    The input consists of several test cases, each test case contains a integer n (1 <= n <= 1016).

    Output:

    For each test case, output positive integer number that does not exceed n and has the greatest possible number of divisors in a line. If there are several such numbers, output the smallest one.

    Sample Input:

    10
    20
    100
    

    Sample Output:

    6
    12
    60
    
    题解:找小于等于n的因子个数最大的最小整数;

    代码:
    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<cmath>
    #include<vector>
    #include<algorithm>
    using namespace std;
    const double PI=acos(-1.0);
    #define SI(x) scanf("%d",&x)
    #define SL(x) scanf("%lld",&x)
    #define PI(x) printf("%d",x)
    #define PL(x) printf("%lld",x)
    #define T_T while(T--)
    #define P_ printf(" ")
    typedef unsigned long long uLL;
    const uLL INF=(uLL)~0;
    int prim[16]={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53};
    uLL n,ans;
    int nn;
    void dfs(int pos,uLL v,int num){
    	if(num==nn)ans=min(ans,v);
    	if(num>nn&&v<=n)nn=num,ans=v;
    	for(int i=1;i<=63;i++){
    		if(v*prim[pos]>n)break;
    		dfs(pos+1,v*=prim[pos],num*(i+1));
    	}
    }
    int main(){
    	while(~scanf("%llu",&n)){
    		nn=0;ans=INF;
    		dfs(0,1,1);
    		printf("%llu
    ",ans);
    	}
    	return 0;
    }
    

      


     
  • 相关阅读:
    java的运行机制及初步相关配置(jdk)
    观察者模式
    Shiro的 rememberMe 功能使用指导(为什么rememberMe设置了没作用?)
    MyBatis—实现关联表查询
    Mybatis解决字段名与实体类属性名不相同的冲突
    Mybatis简化sql书写,别名的使用
    十八.模块
    十七.偏函数
    十六.装饰器
    十五.匿名函数
  • 原文地址:https://www.cnblogs.com/handsomecui/p/5017559.html
Copyright © 2011-2022 走看看