zoukankan      html  css  js  c++  java
  • Parallelogram Counting(平行四边形个数,思维转化)

    1058 - Parallelogram Counting
    Time Limit: 2 second(s) Memory Limit: 32 MB

    There are n distinct points in the plane, given by their integer coordinates. Find the number of parallelograms whose vertices lie on these points. In other words, find the number of 4-element subsets of these points that can be written as {A, B, C, D} such that AB || CD, and BC || AD. No four points are in a straight line.

    Input

    Input starts with an integer T (≤ 15), denoting the number of test cases.

    The first line of each test case contains an integer n (1 ≤ n ≤ 1000). Each of the next n lines, contains 2 space-separated integersx and y (the coordinates of a point) with magnitude (absolute value) of no more than 1000000000.

    Output

    For each case, print the case number and the number of parallelograms that can be formed.

    Sample Input

    Output for Sample Input

    2

    6

    0 0

    2 0

    4 0

    1 1

    3 1

    5 1

    7

    -2 -1

    8 9

    5 7

    1 1

    4 8

    2 0

    9 8

    Case 1: 5

    Case 2: 6

    题解:

    给一系列点,让找到可以组成的平行四边形的个数;

    思路:由于平行四边形的交点是唯一的,那么我们只要记录每两个直线的交点,判断交点重复的个数可以求出来了;假设有这个交点有三个重复的,则ans+=3*2/2;

    代码:

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<algorithm>
    using namespace std;
    const int INF=0x3f3f3f3f;
    typedef long long LL;
    const int MAXN=1010;
    struct Dot{
        double x,y;
        bool operator < (const Dot &b) const{
            if(x!=b.x)return x<b.x;
            else return y<b.y;
        }
    };
    Dot dt[MAXN];
    Dot num[MAXN*MAXN];
    int main(){
        int T,N,kase=0;
        scanf("%d",&T);
        while(T--){
            scanf("%d",&N);
            for(int i=0;i<N;i++)scanf("%lf%lf",&dt[i].x,&dt[i].y);
            int tp=0;
            for(int i=0;i<N;i++)
                for(int j=i+1;j<N;j++){
                    if(dt[i].x==dt[j].x&&dt[i].y==dt[j].y)continue;
                    num[tp].y=(dt[i].y+dt[j].y)/2;
                    num[tp].x=(dt[i].x+dt[j].x)/2;
                    tp++;
                }
                sort(num,num+tp);
                LL ans=0,cur=1;
            for(int i=1;i<tp;i++){
                if(num[i].x==num[i-1].x&&num[i].y==num[i-1].y)cur++;
                else{
                    ans+=cur*(cur-1)/2;cur=1;
                }
            }
            printf("Case %d: %lld
    ",++kase,ans);
        }
        return 0;
    }
  • 相关阅读:
    ACM——Points on Cycle
    ACM——A Simple Problem with Integers(线段树的精华版)
    HDU2524——矩形A+B
    ACM——Hero(类似贪心算法)
    用N个三角形最多可以把平面分成几个区域——acm
    ACM——敌兵布阵(经典的线段树)
    ACM——I Hate It(线段树的进化版)
    ACM——今年暑假不AC
    ACM题目Who's in the Middle
    内部排序算法
  • 原文地址:https://www.cnblogs.com/handsomecui/p/5259374.html
Copyright © 2011-2022 走看看