zoukankan      html  css  js  c++  java
  • Arithmetic Sequence(dp)

    Arithmetic Sequence

    Time Limit: 1 Sec  Memory Limit: 128 MB
    Submit: 51  Solved: 19
    [Submit][Status][Web Board]

    Description

        Giving a number sequence A with length n, you should choosingm numbers from A(ignore the order) which can form an arithmetic sequence and make m as large as possible.

    Input

       There are multiple test cases. In each test case, the first line contains a positive integer n. The second line contains nintegers separated by spaces, indicating the number sequenceA. All the integers are positive and not more than 2000. The input will end by EOF.

    Output

       For each test case, output the maximum  as the answer in one line.

    Sample Input

    5
    1 3 5 7 10
    8
    4 2 7 11 3 1 9 5

    Sample Output

    4
    6

    HINT



       In the first test case, you should choose 1,3,5,7 to form the arithmetic sequence and its length is 4.


       In the second test case, you should choose 1,3,5,7,9,11 and the length is 6.

    题解:等差数列最长长度;开个二维dp,记录下就好了;一维dp也能过。。。
    java超时;c过;
    代码:
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    int dp[2010][2010];
    int a[2010];
    int main(){
        int N;
            while(~scanf("%d", &N)){
                for(int i = 0; i < N; i++){
                    scanf("%d", a + i);
                }
                sort(a, a + N);
                int ans = 1; 
                for(int i = 0; i < N; i++){
                    for(int k = 0; k <= 2000; k++){
                            dp[i][k] = 0;
                    }
                }
                for(int i = 0; i < N; i++){
                    for(int j = 0; j < i; j++){
                        int d = a[i] - a[j];
                        dp[i][d] = dp[j][d] + 1;
                        ans = max(ans, dp[i][d] + 1);
                    }
                }
                printf("%d
    ", ans);
                }
        return 0;
    }

    java:

    import java.util.Arrays;
    import java.util.Scanner;
    
    public class  ArithmeticSequence{
        static int[][] dp = new int[2010][2010];
        public static void main(String[] args){
            Scanner cin = new Scanner(System.in);
            int N;
            while(cin.hasNext()){
                N = cin.nextInt();
                int[] a = new int[N];
                for(int i = 0; i < a.length; i++){
                    a[i] = cin.nextInt();
                }
                Arrays.sort(a);
                int ans = 1; 
                for(int i = 0; i < N; i++){
                    for(int k = 0; k <= 2000; k++){
                            dp[i][k] = 0;
                    }
                }
                for(int i = 0; i < a.length; i++){
                    for(int j = 0; j < i; j++){
                        int d = a[i] - a[j];
                        dp[i][d] = dp[j][d] + 1;
                        ans = Math.max(ans, dp[i][d] + 1);
                    }
                }
                System.out.println(ans);
            }
        }
    }

     dp;

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    int dp[2010];
    int a[2010];
    int main(){
        int N;
            while(~scanf("%d", &N)){
                for(int i = 0; i < N; i++){
                    scanf("%d", a + i);
                }
                sort(a, a + N);
                int ans = 1; 
                    for(int i = 0; i <= 2000; i++){
                        for(int k = 0; k <= 2000; k++){
                            dp[k] = 0;
                    }
                    for(int j = 0; j < N; j++){
                        if(a[j] >= i)dp[a[j]] = max(dp[a[j] - i] + 1, dp[a[j]]);
                        else dp[a[j]] = 1;
                            ans = max(ans, dp[a[j]]);
                    }
                }
                printf("%d
    ", ans);
                }
        return 0;
    }
  • 相关阅读:
    android 多渠道打包
    第三方授权认证(一)实现第三方授权登录、分享以及获取用户资料
    Android:支持不同分辨率的屏幕设计 .
    动画效果编程基础--AnimationAndroid
    Android使用尺寸资源 dimens .
    android手机分辨率整理
    线程和进程
    js和html的结合方式
    成员变量和局部变量
    MySQL基础知识
  • 原文地址:https://www.cnblogs.com/handsomecui/p/5502651.html
Copyright © 2011-2022 走看看