zoukankan      html  css  js  c++  java
  • Arithmetic Sequence(dp)

    Arithmetic Sequence

    Time Limit: 1 Sec  Memory Limit: 128 MB
    Submit: 51  Solved: 19
    [Submit][Status][Web Board]

    Description

        Giving a number sequence A with length n, you should choosingm numbers from A(ignore the order) which can form an arithmetic sequence and make m as large as possible.

    Input

       There are multiple test cases. In each test case, the first line contains a positive integer n. The second line contains nintegers separated by spaces, indicating the number sequenceA. All the integers are positive and not more than 2000. The input will end by EOF.

    Output

       For each test case, output the maximum  as the answer in one line.

    Sample Input

    5
    1 3 5 7 10
    8
    4 2 7 11 3 1 9 5

    Sample Output

    4
    6

    HINT



       In the first test case, you should choose 1,3,5,7 to form the arithmetic sequence and its length is 4.


       In the second test case, you should choose 1,3,5,7,9,11 and the length is 6.

    题解:等差数列最长长度;开个二维dp,记录下就好了;一维dp也能过。。。
    java超时;c过;
    代码:
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    int dp[2010][2010];
    int a[2010];
    int main(){
        int N;
            while(~scanf("%d", &N)){
                for(int i = 0; i < N; i++){
                    scanf("%d", a + i);
                }
                sort(a, a + N);
                int ans = 1; 
                for(int i = 0; i < N; i++){
                    for(int k = 0; k <= 2000; k++){
                            dp[i][k] = 0;
                    }
                }
                for(int i = 0; i < N; i++){
                    for(int j = 0; j < i; j++){
                        int d = a[i] - a[j];
                        dp[i][d] = dp[j][d] + 1;
                        ans = max(ans, dp[i][d] + 1);
                    }
                }
                printf("%d
    ", ans);
                }
        return 0;
    }

    java:

    import java.util.Arrays;
    import java.util.Scanner;
    
    public class  ArithmeticSequence{
        static int[][] dp = new int[2010][2010];
        public static void main(String[] args){
            Scanner cin = new Scanner(System.in);
            int N;
            while(cin.hasNext()){
                N = cin.nextInt();
                int[] a = new int[N];
                for(int i = 0; i < a.length; i++){
                    a[i] = cin.nextInt();
                }
                Arrays.sort(a);
                int ans = 1; 
                for(int i = 0; i < N; i++){
                    for(int k = 0; k <= 2000; k++){
                            dp[i][k] = 0;
                    }
                }
                for(int i = 0; i < a.length; i++){
                    for(int j = 0; j < i; j++){
                        int d = a[i] - a[j];
                        dp[i][d] = dp[j][d] + 1;
                        ans = Math.max(ans, dp[i][d] + 1);
                    }
                }
                System.out.println(ans);
            }
        }
    }

     dp;

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    int dp[2010];
    int a[2010];
    int main(){
        int N;
            while(~scanf("%d", &N)){
                for(int i = 0; i < N; i++){
                    scanf("%d", a + i);
                }
                sort(a, a + N);
                int ans = 1; 
                    for(int i = 0; i <= 2000; i++){
                        for(int k = 0; k <= 2000; k++){
                            dp[k] = 0;
                    }
                    for(int j = 0; j < N; j++){
                        if(a[j] >= i)dp[a[j]] = max(dp[a[j] - i] + 1, dp[a[j]]);
                        else dp[a[j]] = 1;
                            ans = max(ans, dp[a[j]]);
                    }
                }
                printf("%d
    ", ans);
                }
        return 0;
    }
  • 相关阅读:
    [Effective JavaScript 笔记] 第7条:视字符串为16位的代码单元序列
    [翻译]CSS模块-未来的编码方式
    [Effective JavaScript 笔记] 第6条:了解分号插入的局限
    [Effective JavaScript 笔记] 第5条:避免对混合类型使用==运算符
    [Effective JavaScript 笔记] 第4条:原始类型优于封闭对象
    [翻译]理解CSS模块方法
    [翻译]纠正PostCSS的4大认识误区
    [翻译]Gulp.js简介
    [Effective JavaScript笔记]第3条:当心隐式的强制转换
    [翻译]在gulp构建工具中使用PostCSS
  • 原文地址:https://www.cnblogs.com/handsomecui/p/5502651.html
Copyright © 2011-2022 走看看