zoukankan      html  css  js  c++  java
  • 洛谷P1119《灾后重建》

    原更新时间:2019-01-22 15:32:53

    让人加深对 Floyd 的理解

    题目背景

    B地区在地震过后,所有村庄都造成了一定的损毁,而这场地震却没对公路造成什么影响。但是在村庄重建好之前,所有与未重建完成的村庄的公路均无法通车。换句话说,只有连接着两个重建完成的村庄的公路才能通车,只能到达重建完成的村庄。

    题目描述

    给出B地区的村庄数(N),村庄编号从(0)(N−1),和所有(M)条公路的长度,公路是双向的。并给出第(i)个村庄重建完成的时间(t_i),你可以认为是同时开始重建并在第(t_i)​ 天重建完成,并且在当天即可通车。若(t_i)​为(0)则说明地震未对此地区造成损坏,一开始就可以通车。之后有(Q)个询问((x, y, t)),对于每个询问你要回答在第(t)天,从村庄(x)到村庄(y)的最短路径长度为多少。如果无法找到从(x)村庄到(y)村庄的路径,经过若干个已重建完成的村庄,或者村庄(x)或村庄(y)在第(t)天仍未重建完成 ,则需要返回(-1)

    输入输出格式

    输入格式

    第一行包含两个正整数(N,M),表示了村庄的数目与公路的数量。

    第二行包含(N)个非负整数(t_0, t_1,…, t_{N-1}),表示了每个村庄重建完成的时间,数据保证了(t_0 ≤ t_1 ≤ … ≤ t_{N-1})

    接下来(M)行,每行(3)个非负整数(i, j, w)(w)为不超过(10000)的正整数,表示了有一条连接村庄(i)与村庄(j)的道路,长度为(w),保证(i≠j),且对于任意一对村庄只会存在一条道路。

    接下来一行也就是(M+3)行包含一个正整数(Q),表示(Q)个询问。

    接下来(Q)行,每行(3)个非负整数(x, y, t),询问在第(t)天,从村庄(x)到村庄(y)的最短路径长度为多少,数据保证了(t)是不下降的。

    输出格式

    (Q)行,对每一个询问((x, y, t))输出对应的答案,即在第(t)天,从村庄(x)到村庄(y)的最短路径长度为多少。如果在第(t)天无法找到从(x)村庄到(y)村庄的路径,经过若干个已重建完成的村庄,或者村庄(x)或村庄(y)在第(t)天仍未修复完成,则输出(-1)

    输入输出样例

    输入样例

    4 5
    1 2 3 4
    0 2 1
    2 3 1
    3 1 2
    2 1 4
    0 3 5
    4
    2 0 2
    0 1 2
    0 1 3
    0 1 4
    

    输出样例

    -1
    -1
    5
    4
    

    说明

    对于(30\%)的数据,有(N≤50)

    对于(30\%)的数据,有(t_i= 0)​,其中有(20\%)的数据有(t_i = 0)(N>50)

    对于(50\%)的数据,有(Q≤100)

    对于(100\%)的数据,有 (N≤200)(M≤N imes (N-1)/2)(Q≤50000),所有输入数据涉及整数均不超过(100000)

    解题思路

    首先 $ N leq 200 $,那么肯定是用 Floyd

    Floyd 算法的本质是 DP,转移方程为

    [f_{i,j} = min(f_{i,j}, f_{i,k} + f_{k,j}) ]

    其中的这个 (k) 就是「中转点」,表示当前最大能经过编号为 (k) 的点。

    明确了这些,我们再来看题。


    给出每一个点状态转为「可用」的时间和所有的边,让你求任意点到点的距离。
    我们跑 Floyd 时,(k) 限制了我们当前能走的点,就相当于是题目中点的「不可用」状态!再加上所有的询问都是按照时间顺序给出的,所以我们就可以利用 Floyd 的性质来做这题。

    /* -- 全局变量 -- */
    int now = 0; // 当前最多能走第 now 个点,也就是 Floyd 中的 k
    
    /* -- 在函数 main() 里 -- */
    
    std::cin >> start >> end >> ti// 读入起止点 start end 和当前时间 ti
    
    while (Time[now] <= ti) {
    	// 当前的点转为「可用」的时间没有超过当前时间
    	
    	int k = now; // 方便理解
    	// 以下为标准的 Floyd
    	for (int x = 0; x < n; ++x) {
    		for (int y = 0; y < n; ++y) {
    			dis[x][y] = std::min(dis[x][y], dis[x][k] + dis[k][y]);
    		}
    	}
    	++now; // 这个点更新完了,往后继续更新,直到超过当前时间
    }
    if (
    	dis[start][end] == __INF /* 无法到达 */ 
    	|| Time[start] > ti 
    	|| Time[end] > ti /* 没有转为「可用」 */
    ) puts("-1");
    else printf("%d
    ", dis[start][end]); // 输出答案
    

    代码实现

    /* -- Basic Headers -- */
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <cctype>
    #include <algorithm>
    
    /* -- STL Iterators -- */
    #include <vector>
    #include <string>
    #include <stack>
    #include <queue>
    
    /* -- External Headers -- */
    #include <map>
    #include <cmath>
    
    /* -- Defined Functions -- */
    #define For(a,x,y) for (int a = x; a <= y; ++a)
    #define Forw(a,x,y) for (int a = x; a < y; ++a)
    #define Bak(a,y,x) for (int a = y; a >= x; --a)
    
    namespace FastIO {
        
        inline int getint() {
            int s = 0, x = 1;
            char ch = getchar();
            while (!isdigit(ch)) {
                if (ch == '-') x = -1;
                ch = getchar();
            }
            while (isdigit(ch)) {
                s = s * 10 + ch - '0';
                ch = getchar();
            }
            return s * x;
        }
        inline void __basic_putint(int x) {
            if (x < 0) {
                x = -x;
                putchar('-');
            }
            if (x >= 10) __basic_putint(x / 10);
            putchar(x % 10 + '0');
        }
        
        inline void putint(int x, char external) {
            __basic_putint(x);
            putchar(external);
        }
    }
    
    
    namespace Solution {
        const int MAXN = 1000 + 10;
            
        int dis[MAXN][MAXN], k;
    
        int n, m, q;
        int ttime[MAXN];
    }
    
    signed main() {
    #define HANDWER_FILE
    #ifndef HANDWER_FILE
        freopen("testdata.in", "r", stdin);
        freopen("testdata.out", "w", stdout);
    #endif
        using namespace Solution;
        using FastIO::getint;
        n = getint();
        m = getint();
        memset(ttime, 0x3f, sizeof ttime);
        memset(dis, 0x3f, sizeof dis);
        for (int i = 0; i < n; ++i) {
            ttime[i] = getint();
        }
        for (int i = 1; i <= m; ++i) {
            int prev = getint();
            int next = getint();
            int weight = getint();
            dis[prev][next] = dis[next][prev] = weight;
        }
        for (int i = 0; i <= n; ++i) dis[i][i] = 0;
        q = getint();
        for (int i = 1; i <= q; ++i) {
            int s = getint();
            int t = getint();
            int timee = getint();
            int ans = 0;
            while (ttime[k] <= timee) {
                for (int a = 0; a < n; ++a) {
                    for (int b = 0; b < n; ++b) {
                        dis[a][b] = std::min(dis[a][b], dis[a][k] + dis[k][b]);
                    }
                }
                ++k;
            }
            if (dis[s][t] == 0x3f3f3f3f || ttime[s] > timee || ttime[t] > timee) ans = -1;
            else ans = dis[s][t];
            printf("%d
    ", ans);
        }
        return 0;
    }
    
    
  • 相关阅读:
    通过C#代码调用Dynamics 365 Web API执行批量操作
    Dynamics 365 CE Update消息PostOperation阶段Image的尝试
    sql注入100种姿势过waf(二):过安全狗
    sql注入100种姿势过waf(一):waf 了解
    双文件上传突破利用
    渗透实例(一):点后缀突破上传文件
    IIS6.0使用冒号上传漏洞利用
    利用3389端口监视管理员登录
    Windows突破远程连接最大数去掉限制登录
    MIME格式解析
  • 原文地址:https://www.cnblogs.com/handwer/p/13816551.html
Copyright © 2011-2022 走看看