zoukankan      html  css  js  c++  java
  • redis在分布式中的使用

    作者:孤独烟

    来自:http://rjzheng.cnblogs.com/

    为什么要用redis:为了并发和性能,使用redis做为缓冲

    使用redis有什么缺点

    主要是四个问题

    (一)缓存和数据库双写一致性问题

    分析:一致性问题是分布式常见问题,还可以再分为最终一致性和强一致性。数据库和缓存双写,就必然会存在不一致的问题。答这个问题,先明白一个前提。就是如果对数据有强一致性要求,不能放缓存。我们所做的一切,只能保证最终一致性。

    另外,我们所做的方案其实从根本上来说,只能说降低不一致发生的概率,无法完全避免。因此,有强一致性要求的数据,不能放缓存。

    回答:首先,采取正确更新策略,先更新数据库,再删缓存。其次,因为可能存在删除缓存失败的问题,提供一个补偿措施即可,例如利用消息队列。

    (二)缓存雪崩问题 :缓存雪崩,即缓存同一时间大面积的失效,这个时候又来了一波请求,结果请求都怼到数据库上,从而导致数据库连接异常。

    解决方案:
    (一)给缓存的失效时间,加上一个随机值,避免集体失效。

    (二)使用互斥锁,但是该方案吞吐量明显下降了。

    (三)双缓存。我们有两个缓存,缓存A和缓存B。缓存A的失效时间为20分钟,缓存B不设失效时间。自己做缓存预热操作。然后细分以下几个小点

        • I 从缓存A读数据库,有则直接返回

        • II A没有数据,直接从B读数据,直接返回,并且异步启动一个更新线程。

        • III 更新线程同时更新缓存A和缓存B。

    (三)缓存穿透问题 :缓存穿透,即黑客故意去请求缓存中不存在的数据,导致所有的请求都怼到数据库上,从而数据库连接异常。

    解决方案:

    (一)利用互斥锁,缓存失效的时候,先去获得锁,得到锁了,再去请求数据库。没得到锁,则休眠一段时间重试

    (二)采用异步更新策略,无论key是否取到值,都直接返回。value值中维护一个缓存失效时间,缓存如果过期,异步起一个线程去读数据库,更新缓存。需要做缓存预热(项目启动前,先加载缓存)操作。

    (三)提供一个能迅速判断请求是否有效的拦截机制,比如,利用布隆过滤器,内部维护一系列合法有效的key。迅速判断

    缓存击穿问题:

    缓存穿透是说收到了一个请求,但是该请求缓存里没有,只能去数据库里查询,然后放进缓存。这里面有两个风险,一个是同时有好多请求访问同一个数据,然后业务系统把这些请求全发到了数据库;第二个是有人恶意构造一个逻辑上不存在的数据,然后大量发送这个请求,这样每次请求都会被发送到数据库,可能导致数据挂掉。

     

    怎么应对这种情况呢?

    对于恶意访问,一个思路是事先做校验,对恶意数据直接过滤掉,不要发到数据库层;第二个思路是缓存空结果,就是对查询不存在的数据仍然记录一条该数据不存在在缓存里,这样能有效的减少查询数据库的次数。

     

    (四)缓存的并发竞争问题

     

    分析:这个问题大致就是,同时有多个子系统去set一个key。这个时候要注意什么呢?大家思考过么。需要说明一下,博主提前百度了一下,发现答案基本都是推荐用redis事务机制。博主不推荐使用redis的事务机制。

    因为我们的生产环境,基本都是redis集群环境,做了数据分片操作。你一个事务中有涉及到多个key操作的时候,这多个key不一定都存储在同一个redis-server上。因此,redis的事务机制,十分鸡肋。

     

    回答:如下所示

     

    (一)如果对这个key操作,不要求顺序 这种情况下,准备一个分布式锁,大家去抢锁,抢到锁就做set操作即可,比较简单。

     

    (二)如果对这个key操作,要求顺序 假设有一个key1,系统A需要将key1设置为valueA,系统B需要将key1设置为valueB,系统C需要将key1设置为valueC. 期望按照key1的value值按照 valueA-->valueB-->valueC的顺序变化。

    这种时候我们在数据写入数据库的时候,需要保存一个时间戳。假设时间戳如下

    系统A key 1 {valueA  3:00}

    系统B key 1 {valueB  3:05}

    系统C key 1 {valueC  3:10}

    那么,假设这会系统B先抢到锁,将key1设置为{valueB 3:05}。接下来系统A抢到锁,发现自己的valueA的时间戳早于缓存中的时间戳,那就不做set操作了。以此类推。 其他方法,比如利用队列,将set方法变成串行访问也可以。总之,灵活变通。

     

     

    单线程的redis为什么这么快

    (一)纯内存操作

    (二)单线程操作,避免了频繁的上下文切换

    (三)采用了非阻塞I/O多路复用机制:只有单个线程(一个快递员),通过跟踪每个socket(I/O流)的状态(每个快递的送达地点),来管理多个I/O流。

    参照上图,简单来说,就是。我们的redis-client在操作的时候,会产生具有不同事件类型的socket。在服务端,有一段I/0多路复用程序,将其置入队列之中。

    然后,文件事件分派器,依次去队列中取,转发到不同的事件处理器中。 需要说明的是,这个I/O多路复用机制,redis还提供了select、epoll、evport、kqueue等多路复用函数库,大家可以自行去了解。

    redis的数据类型,以及每种数据类型的使用场景

    (一)String:一般做一些复杂的计数功能的缓存。

    (二)hash:做单点登录的时候,就是用这种数据结构存储用户信息,以cookieId作为key,设置30分钟为缓存过期时间,能很好的模拟出类似session的效果。

    (三)list:使用List的数据结构,可以做简单的消息队列的功能。另外还有一个就是,可以利用lrange命令,做基于redis的分页功能,性能极佳,用户体验好。

    (四)set:因为set堆放的是一堆不重复值的集合。所以可以做全局去重的功能。为什么不用JVM自带的Set进行去重?因为我们的系统一般都是集群部署,使用JVM自带的Set,比较麻烦,难道为了一个做一个全局去重,再起一个公共服务,太麻烦了。

    另外,就是利用交集、并集、差集等操作,可以计算共同喜好,全部的喜好,自己独有的喜好等功能。

    (五)sorted set:sorted set多了一个权重参数score,集合中的元素能够按score进行排列。可以做排行榜应用,取TOP N操作。另外,参照另一篇《分布式之延时任务方案解析》,该文指出了sorted set可以用来做延时任务。最后一个应用就是可以做范围查找

    redis的过期策略以及内存淘汰机制

    分析:这个问题其实相当重要,到底redis有没有用到家,这个问题就可以看出来。比如你redis只能存5G数据,可是你写了10G,那会删5G的数据。怎么删的,这个问题思考过么?还有,你的数据已经设置了过期时间,但是时间到了,内存占用率还是比较高,有思考过原因么?

    回答: redis采用的是定期删除+惰性删除策略

    定期删除+惰性删除是如何工作的呢?

    定期删除,redis默认每个100ms检查,是否有过期的key,有过期key则删除。需要说明的是,redis不是每个100ms将所有的key检查一次,而是随机抽取进行检查(如果每隔100ms,全部key进行检查,redis岂不是卡死)。

    因此,如果只采用定期删除策略,会导致很多key到时间没有删除。

    于是,惰性删除派上用场。也就是说在你获取某个key的时候,redis会检查一下,这个key如果设置了过期时间那么是否过期了?如果过期了此时就会删除。

    采用定期删除+惰性删除就没其他问题了么? 不是的,如果定期删除没删除key。然后你也没即时去请求key,也就是说惰性删除也没生效。这样,redis的内存会越来越高。那么就应该采用内存淘汰机制。

    在redis.conf中有一行配置 # maxmemory-policy volatile-lru

  • 相关阅读:
    如何在文本编辑器中实现搜索功能? 字符串比较算法 BF算法 RK算法
    怎么读源码 读源码的一些技巧
    系统性学习
    堆 二叉堆 找流的中位数
    apk系统签名小技巧
    常用adb命令总结
    Android6.0 源码修改之Setting列表配置项动态添加和静态添加
    AndroidStudio开发Java工程(解决java控制台中文打印乱码+导入jar包运行工程)
    加载loading对话框的功能(不退出沉浸式效果)
    Android6.0 源码修改之屏蔽导航栏虚拟按键(Home和RecentAPP)/动态显示和隐藏NavigationBar
  • 原文地址:https://www.cnblogs.com/hangzhi/p/9228799.html
Copyright © 2011-2022 走看看