zoukankan      html  css  js  c++  java
  • bzoj3589 动态树 树链剖分+容斥

    题目传送门

    https://lydsy.com/JudgeOnline/problem.php?id=3589

    题解

    事件 (0) 不需要说,直接做就可以了。

    事件 (1) 的话,考虑如果直接查询然后相加的话,会有很多段被算重了。于是考虑容斥,把算重的段给减掉就可以了。至于如何计算每一段的答案,直接树剖吧。


    时间复杂度 (O(qlog^2n))

    #include<bits/stdc++.h>
    
    #define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
    #define dbg(...) fprintf(stderr, __VA_ARGS__)
    #define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
    #define fi first
    #define se second
    #define pb push_back
    
    template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
    template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;}
    
    typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii;
    
    template<typename I> inline void read(I &x) {
    	int f = 0, c;
    	while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
    	x = c & 15;
    	while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
    	f ? x = -x : 0;
    }
    
    #define lc o << 1
    #define rc o << 1 | 1
    #define lowbit(x) ((x) & -(x))
    
    const int N = 200000 + 7;
    
    int n, m, k, dfc;
    int dep[N], f[N], siz[N], son[N], dfn[N], pre[N], top[N];
    int qx[40], qy[40], pcnt[40];
    
    struct Edge { int to, ne; } g[N << 1]; int head[N], tot;
    inline void addedge(int x, int y) { g[++tot].to = y, g[tot].ne = head[x], head[x] = tot; }
    inline void adde(int x, int y) { addedge(x, y), addedge(y, x); }
    
    struct Node { int add, sum; } t[N << 2];
    inline void qadd(int o, int L, int R, int l, int r, int k) {
    	if (l <= L && R <= r) return t[o].add += k, t[o].sum += (R - L + 1) * k, (void)0;
    	int M = (L + R) >> 1;
    	if (l <= M) qadd(lc, L, M, l, r, k);
    	if (r > M) qadd(rc, M + 1, R, l, r, k);
    	t[o].sum = t[lc].sum + t[rc].sum + t[o].add * (R - L + 1);
    }
    inline int qsum(int o, int L, int R, int l, int r, int add = 0) {
    	if (l <= L && R <= r) return t[o].sum + add * (R - L + 1);
    	int M = (L + R) >> 1;
    	if (r <= M) return qsum(lc, L, M, l, r, add + t[o].add);
    	if (l > M) return qsum(rc, M + 1, R, l, r, add + t[o].add);
    	return qsum(lc, L, M, l, r, add + t[o].add) + qsum(rc, M + 1, R, l, r, add + t[o].add);
    }
    
    inline void upd(int x, int k) { qadd(1, 1, n, dfn[x], dfn[x] + siz[x] - 1, k); }
    inline int qry(int x, int y) {
    	int ans = 0;
    	while (top[x] != top[y]) {
    		if (dep[top[x]] < dep[top[y]]) std::swap(x, y);
    		ans += qsum(1, 1, n, dfn[top[x]], dfn[x]);
    		x = f[top[x]];
    	}
    	if (dep[x] > dep[y]) std::swap(x, y);
    	return ans += qsum(1, 1, n, dfn[x], dfn[y]);
    }
    
    inline void dfs1(int x, int fa = 0) {
    	dep[x] = dep[fa] + 1, f[x] = fa, siz[x] = 1;
    	for fec(i, x, y) if (y != fa) dfs1(y, x), siz[x] += siz[y], siz[y] > siz[son[x]] && (son[x] = y);
    }
    inline void dfs2(int x, int pa) {
    	top[x] = pa, dfn[x] = ++dfc, pre[dfc] = x;
    	if (!son[x]) return; dfs2(son[x], pa);
    	for fec(i, x, y) if (y != f[x] && y != son[x]) dfs2(y, y);
    }
    inline int lca(int x, int y) {
    	while (top[x] != top[y]) dep[top[x]] >= dep[top[y]] ? x = f[top[x]] : y = f[top[y]];
    	return dep[x] < dep[y] ? x : y;
    }
    
    inline bool intree(int x, int y) { return dfn[y] >= dfn[x] && dfn[y] <= dfn[x] + siz[x] - 1; }
    inline pii merge(pii l1, pii l2) {
    	if (dep[l1.fi] > dep[l1.se]) std::swap(l1.fi, l1.se);
    	if (dep[l2.fi] > dep[l2.se]) std::swap(l2.fi, l2.se);
    	if (dep[l1.fi] > dep[l2.fi]) std::swap(l1, l2);
    	if (intree(l1.fi, l2.fi) && intree(l2.fi, l1.se)) return pii(l2.fi, lca(l1.se, l2.se));
    	else return pii(0, 0);
    }
    
    inline void work() {
    	dfs1(1), dfs2(1, 1);
    	read(m);
    	while (m--) {
    		int opt, x, y;
    		read(opt);
    		if (opt == 0) read(x), read(y), upd(x, y);
    		else {
    			read(k);
    			for (int i = 1; i <= k; ++i) read(qx[1 << (i - 1)]), read(qy[1 << (i - 1)]);
    			int ans = 0, S = (1 << k) - 1;
    			for (int s = 1; s <= S; ++s) {
    				int sta = s ^ lowbit(s);
    				pcnt[s] = pcnt[sta] + 1;
    				if (sta) {
    					pii hkk = merge(pii(qx[lowbit(s)], qy[lowbit(s)]), pii(qx[sta], qy[sta]));
    					qx[s] = hkk.fi, qy[s] = hkk.se;
    				}
    				if (qx[s]) {
    					if (pcnt[s] & 1) ans += qry(qx[s], qy[s]);
    					else ans -= qry(qx[s], qy[s]);
    				}
    			}
    			printf("%d
    ", ans & ((1 << 31) - 1));
    		}
    	}
    }
    
    inline void init() {
    	read(n);
    	int x, y;
    	for (int i = 1; i < n; ++i) read(x), read(y), adde(x, y);
    }
    
    int main() {
    #ifdef hzhkk
    	freopen("hkk.in", "r", stdin);
    #endif
    	init();
    	work();
    	fclose(stdin), fclose(stdout);
    	return 0;
    }
    
  • 相关阅读:
    【两周一本书】大话设计模式
    如何将在AWS上的网站快速从http转换为https
    java中error和exception的区别
    Java IO : NIO与IO的区别
    TCP/TP:DNS区域(Zone)
    Liferay 7:Liferay DXP解决方案
    Eclipse:Eclipse插件开发全套教程
    Liferay 7:Liferay DXP全套教程内附源码
    Liferay 7:Liferay内部博客地址
    Gradle:gradle下载插件
  • 原文地址:https://www.cnblogs.com/hankeke/p/bzoj2589.html
Copyright © 2011-2022 走看看