zoukankan      html  css  js  c++  java
  • bzoj4002 [JLOI2015]有意义的字符串 特征根+矩阵快速幂

    题目传送门

    https://lydsy.com/JudgeOnline/problem.php?id=4002

    题解

    神仙题。

    根据下面的一个提示:

    [b^2 leq d leq (b+1)^2 ]

    也就是说 (-1 < b - sqrt d leq 0)

    那么如果我们构造出一个数列 (f),其通项公式为

    [f_n = (frac{b + sqrt d}{2})^n + (frac{b - sqrt d}{2})^n ]

    因为后面的 ((frac{b - sqrt d}{2})^n) 的绝对值 (< 1),(在 (2 | n)(b eq sqrt d) 的时候 (> 0),否则 (<0))。所以我们只要能求出这个东西,就可以非常快速地求出原题的要求的式子了。


    发现这个东西非常像由特征根构造的通项公式。于是我们设 (f_n = a cdot f_{n-1} + c cdot f_{n-2})

    [x^2=ax+c\x^2-ax-c=0\x = frac{apm sqrt{a^2 + 4c}}{2} ]

    于是令 (a = b, c = frac{d - b^2}4)

    正确性很容易验证。


    然后用矩阵求一下即可。

    (2 | n)(b eq sqrt d) 的时候需要把 (a_n - 1)


    #include<bits/stdc++.h>
    
    #define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
    #define dbg(...) fprintf(stderr, __VA_ARGS__)
    #define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
    #define fi first
    #define se second
    #define pb push_back
    
    template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
    template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;}
    
    typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii;
    
    template<typename I> inline void read(I &x) {
    	int f = 0, c;
    	while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
    	x = c & 15;
    	while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
    	f ? x = -x : 0;
    }
    
    const ull P = 7528443412579576937;
    
    ull n, b;
    ull d;
    
    inline ull smod(ull x) { return x >= P ? x - P : x; }
    inline void sadd(ull &x, const ull &y) { x += y; x >= P ? x -= P : x; }
    
    inline ull fmul(ull x, ull y) {
    	ull ans = 0;
    	for (; y; y >>= 1, sadd(x, x)) if (y & 1) sadd(ans, x);
    	return ans;
    }
    
    struct Matrix {
    	ull a[2][2];
    	
    	inline Matrix() { memset(a, 0, sizeof(a)); }
    	inline Matrix(const ull &x) {
    		memset(a, 0, sizeof(a));
    		a[0][0] = a[1][1] = x;
    	}
    	
    	inline Matrix operator * (const Matrix &b) {
    		Matrix c;
    		c.a[0][0] = smod(fmul(a[0][0], b.a[0][0]) + fmul(a[0][1], b.a[1][0]));
    		c.a[0][1] = smod(fmul(a[0][0], b.a[0][1]) + fmul(a[0][1], b.a[1][1]));
    		c.a[1][0] = smod(fmul(a[1][0], b.a[0][0]) + fmul(a[1][1], b.a[1][0]));
    		c.a[1][1] = smod(fmul(a[1][0], b.a[0][1]) + fmul(a[1][1], b.a[1][1]));
    		return c;
    	}
    } A, B;
    
    inline Matrix fpow(Matrix x, ull y) {
    	Matrix ans(1);
    	for (; y; y >>= 1, x = x * x) if (y & 1) ans = ans * x;
    	return ans;
    }
    
    inline void work() {
    	if (n == 0) return (void)puts("1");
    	B.a[0][0] = b, B.a[1][0] = 2;
    	A.a[0][0] = b, A.a[0][1] = (d - (ull)b * b) / 4;
    	A.a[1][0] = 1, A.a[1][1] = 0;
    	B = fpow(A, n - 1) * B;
    	if (n & 1) printf("%llu
    ", B.a[0][0]);
    	else printf("%llu
    ", B.a[0][0] - !((ull)b * b == d));
    }
    
    inline void init() {
    	read(b), read(d), read(n);
    }
    
    int main() {
    #ifdef hzhkk
    	freopen("hkk.in", "r", stdin);
    #endif
    	init();
    	work();
    	fclose(stdin), fclose(stdout);
    	return 0;
    }
    
  • 相关阅读:
    JDBC
    JDBC连接MYSQL
    Servlet学习(1)
    Apache http server和tomcat的区别
    log4j(转)
    《打造Facebook》
    深入浅出Java三大框架SSH与MVC的设计模式
    Python 爬虫监控女神的QQ空间新的说说,实现秒赞,并发送说说内容到你的邮箱
    Python 爬虫监控女神的QQ空间新的说说,实现邮箱发送
    linux 进程消耗查看
  • 原文地址:https://www.cnblogs.com/hankeke/p/bzoj4002.html
Copyright © 2011-2022 走看看