zoukankan      html  css  js  c++  java
  • C

    C - Common Subsequence

    Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 

    Input

    abcfbc abfcab
    programming contest 
    abcd mnp

    Output

    4
    2
    0

    Sample Input

    abcfbc abfcab
    programming contest 
    abcd mnp

    Sample Output

    4
    2
    0


    //求两个字符串的最长公共子序列长度

    //虽然是 dp 序列水题,但是我第一次做不会,没想到转移方程

    代码里写的很清楚了,31ms

    dp[i][j]表示0到i-1跟0到j-1的最长公共子序列长度

     1 #include <stdio.h>
     2 #include <string.h>
     3 
     4 char a[1005];
     5 char b[1005];
     6 int dp[1005][1005];
     7 
     8 int max(int x,int y)
     9 {return x>y?x:y;}
    10 
    11 int main()
    12 {
    13     int i,j;
    14     while(scanf("%s%s",a,b)!=EOF)
    15     {
    16         int la=strlen(a),lb=strlen(b);
    17         for (i=0;i<=lb;i++)
    18             dp[0][i]=0;
    19         for (i=0;i<=la;i++)
    20             dp[i][0]=0;
    21         for (i=1;i<=la;i++)
    22         {
    23             for (j=1;j<=lb;j++)
    24             {
    25                 if (a[i-1]==b[j-1])
    26                     dp[i][j]=dp[i-1][j-1]+1;
    27                 else
    28                     dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
    29             }
    30         }
    31         printf("%d
    ",dp[la][lb]);
    32     }
    33     return 0;
    34 }
    View Code
     
  • 相关阅读:
    docker学习数据卷挂载方式
    接口自动化CIJenkins
    linux安装docker
    docker学习容器备份
    Python实现简易的ORM模型
    Python队列
    selenium实现绕过登录
    docker学习镜像常用操作命令
    docker学习容器常用命令
    把握趋势,成为赢家
  • 原文地址:https://www.cnblogs.com/haoabcd2010/p/5750719.html
Copyright © 2011-2022 走看看