zoukankan      html  css  js  c++  java
  • 独立成分分析 与 功能连接之间的关联尝试 by 张高燕

              

    在处理fMRI数据时,使用空间ICA的方法。
     
    将一个四维的fMRI数据分解为空间pattern与时间序列的乘积。 //这里的pattern=component
     
    其中每一pattern的时间序列是该pattern中强度(z-score值)最大的voxel的时间序列。//取component中z值最大的voxel的timecourse作为此pattern的timecourse
     
    该pattern中剩余voxel的时间序列与最大voxel的时间序列的相关性逐渐降低。对应在pattern中就是剩余voxel的z-score值降低。
     
    因此pattern其实是一个脑网络,可以理解为以最大z-score值也就是peak value与全脑求功能连接得到的连接图。
     
    如果用一个pattern中的peak value为圆心,做ROI,求全脑功能连接,得到的功能连接图fc map与ICA求得的pattern是十分相似的。
                                                      // fc map= functional map
     
    ROI的半径越小,fc map与ICA pattern越相似。
     
    因此在比较前后两次静息态扫描(中间是任务态的学习)某一个网络的变化,可以使用空间ICA找到该网络进行配对检验也可以前后计算fc map来配对检验。
     
    二者结果理论上应该是比较接近的。
     
    之所以说二者结果接近而不是一致是因为前后两次扫描可能会导致peak value所在的voxel不一样,如第一次在voxelA,第二次在voxelB,另外数据中也存在些噪音还有头动等都会影响结果。
     
    空间ICA得到的pattern在空间上是独立的,也就是空间不重合的。因此每一个pattern就构成了一个脑网络,它们在空间上是不重合的。
  • 相关阅读:
    jquery2
    数据库回顾
    jquery
    BOM DOM 注意事項
    JavaScript 注意
    javascrip
    CSS
    html
    网络编程
    淘宝下单高并发解决方案
  • 原文地址:https://www.cnblogs.com/haore147/p/3619026.html
Copyright © 2011-2022 走看看