题目描述
不换行:从上到下打印出二叉树的每个节点,同层的节点按照从左到右的顺序打印。例如,输入下图的二叉树,则依次打印出8,6,10,5,7,9,11。
要换行:从上到下按层打印二叉树,同一层的节点按从左到右的顺序打印,每一层打印到一行
8 6 10
5 7 9 11之字形:请实现一个函数按照之字形顺序打印二叉树,即第一行按照从左到右的顺序打印,第二层按照从右到左的顺序打印,第三行再按照从左到右的顺序打印,其他行以此类推。打印结果应为:
8 10 6
5 7 9 11
二叉树节点的定义如下:

思路分析
其实就是二叉树的层次遍历,借助队列实现
之字形打印:需要两个栈实现
测试用例
- 功能测试:完全二叉树;所有节点只有左子树的二叉树;所有节点只有右子树的二叉树。
- 特殊输入测试:二叉树根节点为nullptr 指针;只有一个节点的二叉树。
Java代码
public class Offer32 {
public static void main(String[] args) {
test1();
test2();
test3();
}
public static List PrintFromTopToBottom(TreeNode root) {
return Solution3(root);
}
private static ArrayList<Integer> Solution1(TreeNode root) {
LinkedList<TreeNode> queue = new LinkedList<TreeNode>();
ArrayList<Integer> list = new ArrayList<Integer>();
if(root==null){
return list;
}
queue.offer(root);
TreeNode node = null;
while(queue.size()!=0){
node = queue.poll();
list.add(node.val);
if(node.left!=null){
queue.offer(node.left);
}
if(node.right!=null){
queue.offer(node.right);
}
}
return list;
}
private static ArrayList<ArrayList<Integer>> Solution2(TreeNode root) {
ArrayList<ArrayList<Integer>> list = new ArrayList<ArrayList<Integer>>();
ArrayList<Integer> levelList = null;
if(root == null){
return list;
}
LinkedList<TreeNode> queue = new LinkedList<TreeNode>();
queue.offer(root);
int nextLevel= 1; //下层节点个数
int toBePrinted = 0 ;//当前层还需要打印的节点个数
TreeNode node =null;
while(queue.size()!=0){
toBePrinted = nextLevel;
nextLevel = 0;
levelList = new ArrayList<Integer>();
for(int i=1;i<=toBePrinted;i++){
node = queue.pop();
levelList.add(node.val);
if(node.left!=null){
queue.offer(node.left);
nextLevel ++ ;
}
if(node.right!=null){
queue.offer(node.right);
nextLevel ++ ;
}
}
list.add(levelList);
}
return list;
}
private static ArrayList<ArrayList<Integer>> Solution3(TreeNode root) {
ArrayList<ArrayList<Integer>> list = new ArrayList<ArrayList<Integer>>();
ArrayList<Integer> levelList = null;
if(root==null) {
return list;
}
Stack<TreeNode> stack1 = new Stack<TreeNode>();
Stack<TreeNode> stack2 = new Stack<TreeNode>();
stack1.push(root);
TreeNode node =null;
while(!stack1.isEmpty() || !stack2.isEmpty()) {
if(!stack1.isEmpty()) {
levelList = new ArrayList<>();
while(!stack1.isEmpty()) {
node = stack1.pop();
levelList.add(node.val);
if(node.left!=null) {
stack2.push(node.left);
}
if(node.right!=null) {
stack2.push(node.right);
}
}
list.add(levelList);
}else {
levelList = new ArrayList<>();
while(!stack2.isEmpty()) {
node = stack2.pop();
levelList.add(node.val);
if(node.right!=null) {
stack1.push(node.right);
}
if(node.left!=null) {
stack1.push(node.left);
}
}
list.add(levelList);
}
}
return list;
}
@SuppressWarnings("unused")
private static void test1() {
TreeNode root = new TreeNode(8);
TreeNode node1 = new TreeNode(6);
TreeNode node2 = new TreeNode(10);
TreeNode node3 = new TreeNode(5);
TreeNode node4 = new TreeNode(7);
TreeNode node5 = new TreeNode(9);
TreeNode node6 = new TreeNode(11);
root.left=node1;
root.right=node2;
node1.left=node3;
node1.right=node4;
node2.left=node5;
node2.right=node6;
TreeNode.preOrder(root);
System.out.println();
ArrayList<ArrayList<Integer>> list = (ArrayList<ArrayList<Integer>>) PrintFromTopToBottom(root);
// Solution3(root);
System.out.println(list);
}
private static void test2() {
}
private static void test3() {
}
}