zoukankan      html  css  js  c++  java
  • 202120221 20191315《信息安全系统设计与实现(上)》学习笔记10

    第十二章 块设备I/O和缓冲区管理

    块设备I/O缓冲区

    文件系统使用一系列IO缓冲区作为块设备的缓存内存。当进程试图读取(dev,blk)标识的磁盘块时,它首先在缓冲区缓存中搜索分配给磁盘块的缓冲区。如果该缓冲区存在并且包含有效数据,那么它只需从缓冲区中读取数据,而无须再次从磁盘中读取数据块。如果该缓冲区不存在,它会为磁盘块分配一个缓冲区,将数据从磁盘读入缓冲区,然后从缓冲区读取数据。当某个块被读入时,该缓冲区将被保存在缓冲区缓存中,以供任意进程对同一个块的下一次读/写请求使用。同样,当进程写入磁盘块时,它首先会获取一个分配给该块的缓冲区。然后,它将数据写入缓冲区,将缓冲区标记为脏,以延迟写人,并将其释放到缓冲区缓存中。由于脏缓冲区包含有效的数据,因此可以使用它来满足对同一块的后续读/写请求,而不会引起实际磁盘L/O。脏缓冲区只有在被重新分配到不同的块时才会写入磁盘。

    • 定义一个bread(dev, blk)函数,它会返回一个包含有效数据的缓冲区(指针)。
    BUFFER *bread(dev,blk) // return a buffer containing valid data
    {
    BUFFER *bp =» getblk(dev,blk)} // get a buffer for (dev,blk) if (bp data valid)
    return bp;
    bp->opcode = READ;	// issue READ operation
    start_lo(bp):	// ntart I/O on device
    wait for I/O completion;
    }
    
    • 从缓冲区读取数据后,进程通过brelse(hp)格缓冲区释放回缓冲区缓存。同理,定义一个 write_block(dev, blk, data)函数:
    write_block(devf blk, data)
    BUFFER *bp = bread(dev,blk);	// read in the disk block first
    write data to bp;
    (synchronous write)? bwrite(bp) : dwrite(bp);
    bwrite(BUFFER *bp)( bp->opcode = WRITE; start_io(bp); 
    wait for I/O completion; 
    brelse(bp); // release bp
    dwrite(BUFFER *bp)( mark bp dirty for delay_write;
    brelse(bp); // release bp
    

    Unix I/O缓冲区管理算法

    • I/O缓冲区:内核中的一系列NBUF缓冲区用作缓冲区缓存。每个缓冲区用一个结构体表示。
    typdef struct buf{
    struct buf *next_free;	//freelist pointer
    struct buf *next_dev;	//dev_list pointer
    int dev,blk;	//assigned disk block;
    int opcode;	//READ|WRITE
    int dirty;	//buffer data modified
    int async;	//ASYNC write flag
    int valid;	//buffer data valid
    int busy;	//buffer is in use
    int wanted;		some process needs this buffer
    struct, semaphore lock=l ;	//buffer locking semaphore; value=L
    struct semaphore iodone=0;	//for process to wait for I/O completion;
    char buf[BLKSIZE];	//block data area
    } BUFFER;
    BUFFER buf[NBUF], *freelist; // NBUF buffers and free buffer list
    
    • 设备表:每个块设备用一个设备表结构表示。
    • 缓冲区初始化:当系统启动时,所有I/O缓冲区都在空闲列表中,所有设备列表和T/O队列均为空。
    • 缓冲区列表:当缓冲区分配给(dev,blk)时,它会被插入设备表的dev_list中。如果缓冲区当前正在使用,则会将其标记为BUSY(繁忙)并从空闲列表中删除。
    • Unix getblk/brelse算法

    Unix算法的缺点:

    (1)效率低下:该算法依赖于重试循环,例如,释放缓冲区可能会唤醒两组进程:需要释放的缓冲区的进程,以及只需要空闲缓冲区的进程。由于只有一个进程可以获取释放的缓冲区,所以,其他所有被唤醒的进程必须重新进入休眠状态。从休眠状态唤醒后,每个被唤醒的进程必须从头开始重新执行算法,因为所需的缓冲区可能已经存在。这会导致过多的进程切换。
    (2)缓存效果不可预知:在Unix算法中,每个释放的缓冲区都可被获取'如果缓冲区 由需要空闲缓冲区的进程获取,那么将会重新分配缓冲区,即使有些进程仍然需要当前的缓冲区。
    (3)可能会出现饥饿:Unix算法基于“自由经济”原则,即每个进程都有尝试的机会,但不能保证成功,因此,可能会出现进程饥饿。
    (4)该算法使用只适用丁单处理器系统的休眠/唤醒操作。

    新的I/O缓冲区管理算法

    • 信号量的主要优点是:
      • 计数信号量可用来表示可用资源的数量,例如:空闲缓冲区的数量。
      • 当多个进程等待一个资源时,信号量上的V操作只会释放一个等待进程,该进程不必重试,因为它保证拥有资源。

    使用信号量的缓冲区管理算法

    假设有一个单处理器内核(一次运行一个进程)。使用计数信号量上的P/V来设计满足以下要求的新的缓冲区管理算法:
    (1)保证数据一致性
    (2)良好的缓存效果
    (3)高效率:没有重试循环,没有不必要的进程“唤醒”
    (4)无死锁和饥饿

    PV算法

    BUFFER *getb1k(dev,blk):
    while(1){
    (1). P(free);
    //get a free buffer first 
    if (bp in dev_1ist){
    (2). if (bp not BUSY){
    remove bp from freelist;P(bp);
    // lock bp but does not wait
    (3).return bp;
    // bp in cache but BUSY V(free);
    // give up the free buffer
    (4).P(bp);
    // wait in bp queue
    return bp;v
    // bp not in cache,try to create a bp=(dev,blk)
    (5).bp = frist buffer taken out of freelist;P(bp);
    // lock bp,no wait
    (6).if(bp dirty){
    awzite(bp);
    // write bp out ASYNC,no wait
    continue;
    // continue from (1)
    (7).reassign bp to(dev,blk);1/ mark bp data invalid,not dir return bp;-
    // end of while(1);
    brelse(BUFFER *bp),
    {
    (8).iF (bp queue has waiter)( V(bp); return; ]
    (9).if(bp dirty && free queue has waiter){ awrite(bp);zeturn;}(10).enter bp into(tail of) freelist;V(bp);V(free);
    }
    
    • 缓冲区唯一性
    • 无重试循环
    • 无不必要唤醒
    • 缓存效果

    实践

    代码

    点击查看代码
    #include <stdio.h>
    #include <errno.h>
    #include <stdlib.h>
    int main (){
        FILE* fd;
        fd=fopen("/src/hello","r");
        if(NULL==fd){
            perror("cannot open file");
            return -1;
        }
        return 0;
    }
    

    运行结果

  • 相关阅读:
    Hadoop 0.23.1 Release Notes
    maven编译参数
    Hadoop快速入门
    HTML Parser HTML Parser
    EasyHadoop v1.0
    Hudson+Maven+SVN 快速搭建持续集成环境
    对技术要有足够的尊重和敬畏
    hudson设置
    python之强大的日志模块 竹叶青 的专栏 博客频道 CSDN.NET
    PHP学习之七:错误控制运算符
  • 原文地址:https://www.cnblogs.com/harperhjl/p/15579293.html
Copyright © 2011-2022 走看看