问题描述
Given two words (beginWord and endWord), and a dictionary, find the length of shortest transformation sequence from beginWord to endWord, such that:
- Only one letter can be changed at a time
- Each intermediate word must exist in the dictionary
For example,
Given:
start = "hit"
end = "cog"
dict = ["hot","dot","dog","lot","log"]
As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog"
,
return its length 5
.
Note:
- Return 0 if there is no such transformation sequence.
- All words have the same length.
- All words contain only lowercase alphabetic characters.
解决思路
BFS.
程序
public class Solution { public int ladderLength(String beginWord, String endWord, Set<String> wordDict) { if (beginWord == null || endWord == null || wordDict == null) { return 0; } Queue<String> q = new LinkedList<String>(); q.offer(beginWord); int level = 0; boolean flag = false; ps: while (true) { int size = q.size(); for (int i = 0; i < size; i++) { String s = q.poll(); for (int j = 0; j < s.length(); j++) { char[] cc = s.toCharArray(); for (int k = 0; k < 26; k++) { char c = (char) ('a' + k); if (c == cc[j]) { continue; } cc[j] = c; String new_s = new String(cc); if (new_s.equals(endWord)) { flag = true; break ps; } if (wordDict.contains(new_s)) { q.offer(new_s); wordDict.remove(new_s); } } } } if (q.isEmpty()) { break; } ++level; } return flag ? level + 2 : 0; } }