zoukankan      html  css  js  c++  java
  • Image Processing for Very Large Images

    The key idea here is the partial image descriptor

    VIPS(VASARI Image Processing System) 是近几年逐渐兴起的针对大图像数据高效处理的开源库,下面给出一个表格显示出其相对于目前的一些其他开源库,针对同一组5000×5000,8-bit的RGB三通道TIFF图像,在运行时间,内存消耗上的对比,明显可以看出其优势。

    Software Run time (secs real) Memory (peak RSS MB) Times slower
    VIPS C/C++ 8.1 0.20 43 1.0
    Python VIPS 8.1 0.30 52 1.5
    VIPS command-line 8.1 0.55 40 2.4
    VIPS C/C++ 8.1, JPEG images 0.38 59 2.7
    ymagine 0.7.0 1.07 2.7 2.8 (compared to vips-c JPEG)
    GraphicsMagick 1.3.20 0.67 492 3.4
    sips 10.4.4 0.74 (est.) 268 3.7
    ImageMagick 6.8.9-9 0.78 484 3.9
    VIPS nip2 8.1 0.79 78 4.0
    RMagick 2.15.2 (ImageMagick 6.8.9) 0.87 684 4.4
    NetPBM 10.0 0.93 76 4.7
    Pillow 2.7.0 0.93 207 4.7
    OpenCV 2.4.9 1.13 206 5.7
    libgd 2.1.1 2.34 186 6.1 (compared to vips-c JPEG)
    Imlib2 1.4.7 1.53 250 7.7
    ExactImage 0.8.9 1.54 130 7.7
    FreeImage 3.15.4 (incomplete) 1.63 183 8.1
    gmic 1.5.7.1 1.87 700 9.35
    ImageScience 1.2.6 (based on FreeImage 3.15.4, incomplete) 1.9 267 9.5
    OpenImageIO 1.3.12 2.79 811 14
    GEGL 0.2 16.2 410 43 (compared to vips-c JPEG)
    Octave 3.8 30 (est.) 8500 (est.) 200

    测试环境:

    E5-1650 @ 3.20GHz (HP workstation), Ubuntu 15.04

    对应的Memory vs. time 曲线图如下:

    可以看出,相比于其它库,vips处理速度更快,而且消耗的内存更小,但是比较麻烦的是配置比较麻烦…


    提供一个下载链接: http://www.vips.ecs.soton.ac.uk/supported/current/win32/

  • 相关阅读:
    路由系统整合
    python操作excel
    Django models ORM基础操作--白话聊Django系列
    Django视图views--白话聊Django系列
    Django分发控制器urls--白话聊Django系列
    HTML页面布局
    一篇搞定SQLAlchemy--关系对象映射
    [LC] 538. Convert BST to Greater Tree
    [LintCode] 535. House Robber III
    [Algo] Rotate String
  • 原文地址:https://www.cnblogs.com/hehehaha/p/6332197.html
Copyright © 2011-2022 走看看