zoukankan      html  css  js  c++  java
  • POJ1584 A Round Peg in a Ground Hole 凸包判断 圆和凸包的关系

    POJ1584

    题意:给定n条边首尾相连对应的n个点 判断构成的图形是不是凸多边形

           然后给一个圆 判断圆是否完全在凸包内(相切也算)

    思路:首先运用叉积判断凸多边形 相邻三条边叉积符号相异则必有凹陷 O(n)

            之后首先判断圆心是否在凸多边形内 如果凸多边形的点有序 则可以在logn时间内判断 否则先排序再判断 O(nlogn)

            然后用每条边(线段)判断到圆心的距离即可

    这道题也没给数据范围 O(nlogn)是可以AC的。

    #include<iostream>
    #include<stdio.h>
    #include<stdlib.h>
    #include<string.h>
    #include<math.h>
    #include<algorithm>
    #include<queue>
    #include<vector>
    using namespace std;
    
    const double eps=1e-9;
    
    int cmp(double x)
    {
     if(fabs(x)<eps)return 0;
     if(x>0)return 1;
     	else return -1;
    }
    
    const double pi=acos(-1.0);
    
    inline double sqr(double x)
    {
     return x*x;
    }
    
    
    
    
    
    
    struct point
    {
     double x,y;
     point (){}
     point (double a,double b):x(a),y(b){}
     void input()
     	{
     	 scanf("%lf%lf",&x,&y);
    	}
     friend point operator +(const point &a,const point &b)
     	{
     	 return point(a.x+b.x,a.y+b.y);
    	}	
     friend point operator -(const point &a,const point &b)
     	{
     	 return point(a.x-b.x,a.y-b.y);
    	}
     friend bool operator ==(const point &a,const point &b)
     	{
     	 return cmp(a.x-b.x)==0&&cmp(a.y-b.y)==0;
    	}
     friend point operator *(const point &a,const double &b)
     	{
     	 return point(a.x*b,a.y*b);
    	}
     friend point operator*(const double &a,const point &b)
     	{
     	 return point(a*b.x,a*b.y);
    	}
     friend point operator /(const point &a,const double &b)
     	{
     	 return point(a.x/b,a.y/b);
    	}
     double norm()
     	{
     	 return sqrt(sqr(x)+sqr(y));
    	}
    };
    
    struct line
    {
     point a,b;
     line(){};
     line(point x,point y):a(x),b(y)
     {
     	
     }
    };
    double det(const point &a,const point &b)
    {
     return a.x*b.y-a.y*b.x;
    }
    
    double dot(const point &a,const point &b)
    {
     return a.x*b.x+a.y*b.y; 
    }
    
    double dist(const point &a,const point &b)
    {
     return (a-b).norm();
    }
    
    point rotate_point(const point &p,double A)
    {
     double tx=p.x,ty=p.y;
     return point(tx*cos(A)-ty*sin(A),tx*sin(A)+ty*cos(A));
    }
    
    
    
    
    bool parallel(line a,line b)
    {
     return !cmp(det(a.a-a.b,b.a-b.b));
    }
    
    bool line_joined(line a,line b,point &res)
    {
     if(parallel(a,b))return false;
     double s1=det(a.a-b.a,b.b-b.a);
     double s2=det(a.b-b.a,b.b-b.a);
     res=(s1*a.b-s2*a.a)/(s1-s2);
     return true;
    }
    
    bool pointonSegment(point p,point s,point t)
    {
     return cmp(det(p-s,t-s))==0&&cmp(dot(p-s,p-t))<=0;
    }
    
    void PointProjLine(const point p,const point s,const point t,point &cp)
    {
     double r=dot((t-s),(p-s))/dot(t-s,t-s);
     cp=s+r*(t-s);
    }
    
    
    struct polygon_convex
    {
     vector<point>P;
     polygon_convex(int Size=0)
     	{
     	 P.resize(Size);
    	}	
    };
    
    bool comp_less(const point &a,const point &b)
    {
     return cmp(a.x-b.x)<0||cmp(a.x-b.x)==0&&cmp(a.y-b.y)<0;
     
    }
    
    
    polygon_convex convex_hull(vector<point> a)
    {
     polygon_convex res(2*a.size()+5);
     sort(a.begin(),a.end(),comp_less);
     a.erase(unique(a.begin(),a.end()),a.end());//删去重复点 
     int m=0;
     for(int i=0;i<a.size();i++)
     	{
     	 while(m>1&&cmp(det(res.P[m-1]-res.P[m-2],a[i]-res.P[m-2]))<=0)--m;
     	 res.P[m++]=a[i];
    	}
     int k=m;
     for(int i=int(a.size())-2;i>=0;--i)
     	{
     	 while(m>k&&cmp(det(res.P[m-1]-res.P[m-2],a[i]-res.P[m-2]))<=0)--m;
     	 res.P[m++]=a[i];
    	}
     res.P.resize(m);
     if(a.size()>1)res.P.resize(m-1);
     return res;
    }
    
    bool is_convex(vector<point> &a)
    {
     for(int i=0;i<a.size();i++)
     	{
     	 int i1=(i+1)%int(a.size());
     	 int i2=(i+2)%int(a.size());
     	 int i3=(i+3)%int(a.size());
     	 if((cmp(det(a[i1]-a[i],a[i2]-a[i1]))*cmp(det(a[i2]-a[i1],a[i3]-a[i2])))<0)
    	  	return false;
    	}
     return true;
    }
    int containO(const polygon_convex &a,const point &b)
    {
     int n=a.P.size();
     point g=(a.P[0]+a.P[n/3]+a.P[2*n/3])/3.0;
     int l=0,r=n;
     while(l+1<r)
     	{
     	 int mid=(l+r)/2;
     	 if(cmp(det(a.P[l]-g,a.P[mid]-g))>0)
     	 	{
     	 	 if(cmp(det(a.P[l]-g,b-g))>=0&&cmp(det(a.P[mid]-g,b-g))<0)r=mid;
     	 	 	else l=mid;
    		}else
    			{
    			 if(cmp(det(a.P[l]-g,b-g))<0&&cmp(det(a.P[mid]-g,b-g))>=0)l=mid;
     	 	 		else r=mid;	
    			}
    	} 
     r%=n;
     int z=cmp(det(a.P[r]-b,a.P[l]-b))-1;
     if(z==-2)return 1;
     return z;	
    }
    
    bool circle_in_polygon(point cp,double r,polygon_convex &pol)
    {
    
     polygon_convex pp=convex_hull(pol.P);
     if(containO(pp,cp)!=1)return false;
     for(int i=0;i<pol.P.size();i++)
     	{
     	 int j;
     	 if(i<pol.P.size()-1)j=i+1;
     	 	else j=0;
     	 point prol;
     	 PointProjLine(cp,pol.P[i],pol.P[j],prol);
     	 double dis;
     	 if(pointonSegment(prol,pol.P[i],pol.P[j]))dis=dist(prol,cp);
     	 	else dis=min(dist(cp,pol.P[i]),dist(pol.P[j],cp));
     	 if(cmp(dis-r)==-1)return false;
    	}
     return true;
    }
    vector<point>pn;
    int main()
    {freopen("t.txt","r",stdin);
     //freopen("1.txt","w",stdout);
     int n;
     while(scanf("%d",&n)&&n>=3)
     	{pn.resize(n);
     	 double ra;scanf("%lf",&ra);
     	 point cc;cc.input();
     	 for(int i=0;i<n;i++)
     	 	 pn[i].input();
     	 polygon_convex pc;
     	 if(!is_convex(pn)){printf("HOLE IS ILL-FORMED
    ");continue;}
     	 pc.P=pn;
     	 if(circle_in_polygon(cc,ra,pc)){printf("PEG WILL FIT
    ");continue;}
     	 	else {printf("PEG WILL NOT FIT
    ");continue;}
    	} 
     return 0;
    }
    

      

  • 相关阅读:
    使用WLC+Portal完成认证
    WLAN PSK认证
    Bug搬运工-flexconnect AP losing Vlan mapping and fall back to default vlan
    Catalyst 9400配置StackWise Virtual
    如何在Wave2 AP上更改时区
    VMware Workstation导入ova镜像文件时报错?
    Password Recovery on Cisco Catalyst 3850
    Mobility Express初始化和升级
    C9300升级-TFTP
    查看WLC的SFP模块信息
  • 原文地址:https://www.cnblogs.com/heisenberg-/p/6675932.html
Copyright © 2011-2022 走看看