Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[ 6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
思路:
新建一个记录路径和的三角形,里面每一个元素代表到达此处的最小路径和。
从上到下更新此三角。最后在最后一排中找到最小的一个即为所求。
int minimumTotal(vector<vector<int>>& triangle) { vector<vector<int>>triangleSum = triangle; int size = triangleSum.size(); for (int i = 1; i < size;i++) { for (int j = 0; j < triangle[i].size();j++) { if (j ==0)//第一列 { triangleSum[i][j] = triangleSum[i][j] + triangleSum[i - 1][j]; } else if (j == triangle[i].size() - 1)//最后一列 { triangleSum[i][j] = triangleSum[i][j] + triangleSum[i - 1][j-1]; } else { triangleSum[i][j] = triangleSum[i][j] + min(triangleSum[i - 1][j], triangleSum[i - 1][j - 1]); } } } int result = triangleSum[size -1][0]; for (int i = 0; i < triangleSum[size - 1].size();i++) { result = min(result, triangleSum[size - 1][i]); } return result; }