zoukankan      html  css  js  c++  java
  • [leetcode-523-Continuous Subarray Sum]

    Given a list of non-negative numbers and a target integer k, write a function to check if the array has a continuous subarray of size at least 2 that sums up to the multiple of k, that is, sums up to n*k where n is also an integer.

    Example 1:

    Input: [23, 2, 4, 6, 7],  k=6
    Output: True
    Explanation: Because [2, 4] is a continuous subarray of size 2 and sums up to 6.
    

    Example 2:

    Input: [23, 2, 6, 4, 7],  k=6
    Output: True
    Explanation: Because [23, 2, 6, 4, 7] is an continuous subarray of size 5 and sums up to 42.
    

    Note:

    1. The length of the array won't exceed 10,000.
    2. You may assume the sum of all the numbers is in the range of a signed 32-bit integer.

    思路:

    首先想到用动态规划,使用dp[i][j]记录nums中i到j的和,然后随时判断是否满足余数为0.

    注意处理k==0时候的情况。

    但是直接用二维数组记录的话,提示内存不足,耗费空间。

    更新公式为 dp[i][j] = dp[i][j-1]+nums[j] ,可以看出dp[i][j]只与上一个dp[i][j-1]有关,

    于是用两个变量替代即可。得到如下代码,时间复杂度为O(n2).

    bool checkSubarraySum(vector<int>& nums, int k)
         {
             int len = nums.size();
            // vector<vector<int>> dp(len, vector<int>(len, 0));
             long long cur = 0, pre = 0;
             for (int i = 0; i < len;i++)
             {
                 for (int j = i; j < len;j++)
                 {
                     if (j == i)cur = nums[i];
                     else
                     {
                         cur = pre + nums[j];
                         if (k != 0 && cur % k == 0)return true;
                         else if (k == 0 && cur == 0) return true;                      
                     }
                     pre = cur;
                 }
             }
             return false;
         }

    后来参考网上大牛的代码,学习到了他们的解法。

    比如他们用一个set去存储i之前元素和的余数,如果往后遍历到j元素和的余数之前出现过,说明i到j的和为k的整数倍。

    这样时间复杂度为O(n).

    class Solution {
    public:
        bool checkSubarraySum(vector<int>& nums, int k) {
            int n = nums.size(), sum = 0, pre = 0;
            unordered_set<int> modk;
            for (int i = 0; i < n; ++i) {
                sum += nums[i];
                int mod = k == 0 ? sum : sum % k;
                if (modk.count(mod)) return true;
                modk.insert(pre);
                pre = mod;
            }
            return false;
        }
    };

    参考:

    https://discuss.leetcode.com/topic/80892/concise-c-solution-use-set-instead-of-map

  • 相关阅读:
    牛津
    负逻辑
    NB的为运算
    顿悟--人生也许该如此
    河南近亿国民致教育部的公开信:国民待遇!
    三年
    简体字、白话文的应用是流传百年的错误思潮
    鸿蒙系统的源码,请需要的同志查看
    解决好123劫持主页的方法
    vue echarts 给双饼图添加点击事件
  • 原文地址:https://www.cnblogs.com/hellowooorld/p/7055177.html
Copyright © 2011-2022 走看看