zoukankan      html  css  js  c++  java
  • opencv C++ mask_rcnn

    #include <fstream>
    #include <sstream>
    #include <iostream>
    #include <string.h>
    
    #include <opencv2/dnn.hpp>
    #include <opencv2/imgproc.hpp>
    #include <opencv2/highgui.hpp>
    
    
    using namespace cv;
    using namespace dnn;
    using namespace std;
    
    // Initialize the parameters
    float confThreshold = 0.5; // Confidence threshold
    float maskThreshold = 0.3; // Mask threshold
    
    vector<string> classes;
    vector<Scalar> colors;
    
    // Draw the predicted bounding box
    void drawBox(Mat& frame, int classId, float conf, Rect box, Mat& objectMask);
    
    // Postprocess the neural network's output for each frame
    void postprocess(Mat& frame, const vector<Mat>& outs);
    
    int main()
    {
        // Load names of classes
        string classesFile = "./mask_rcnn_inception_v2_coco_2018_01_28/mscoco_labels.names";
        ifstream ifs(classesFile.c_str());
        string line;
        while (getline(ifs, line)) classes.push_back(line);
    
        // Load the colors
        string colorsFile = "./mask_rcnn_inception_v2_coco_2018_01_28/colors.txt";
        ifstream colorFptr(colorsFile.c_str());
        while (getline(colorFptr, line)) 
        {
            char* pEnd;
            double r, g, b;
            r = strtod(line.c_str(), &pEnd);
            g = strtod(pEnd, NULL);
            b = strtod(pEnd, NULL);
            Scalar color = Scalar(r, g, b, 255.0);
            colors.push_back(Scalar(r, g, b, 255.0));
        }
    
        // Give the configuration and weight files for the model
        String textGraph = "./mask_rcnn_inception_v2_coco_2018_01_28/mask_rcnn_inception_v2_coco_2018_01_28.pbtxt";
        String modelWeights = "./mask_rcnn_inception_v2_coco_2018_01_28/frozen_inference_graph.pb";
    
        // Load the network
        Net net = readNetFromTensorflow(modelWeights, textGraph);
        net.setPreferableBackend(DNN_BACKEND_OPENCV);
        net.setPreferableTarget(DNN_TARGET_CPU);
    
        // Open a video file or an image file or a camera stream.
        string str, outputFile;
        VideoCapture cap(0);//根据摄像头端口id不同,修改下即可
        //VideoWriter video;
        Mat frame, blob;
    
        // Create a window
        static const string kWinName = "Deep learning object detection in OpenCV";
        namedWindow(kWinName, WINDOW_NORMAL);
    
        // Process frames.
        while (waitKey(1) < 0)
        {
            // get frame from the video
            cap >> frame;
    
            // Stop the program if reached end of video
            if (frame.empty()) 
            {
                cout << "Done processing !!!" << endl;
                cout << "Output file is stored as " << outputFile << endl;
                waitKey(3000);
                break;
            }
            // Create a 4D blob from a frame.
            blobFromImage(frame, blob, 1.0, Size(frame.cols, frame.rows), Scalar(), true, false);
            //blobFromImage(frame, blob);
    
            //Sets the input to the network
            net.setInput(blob);
    
            // Runs the forward pass to get output from the output layers
            std::vector<String> outNames(2);
            outNames[0] = "detection_out_final";
            outNames[1] = "detection_masks";
            vector<Mat> outs;
            net.forward(outs, outNames);
    
            // Extract the bounding box and mask for each of the detected objects
            postprocess(frame, outs);
    
            // Put efficiency information. The function getPerfProfile returns the overall time for inference(t) and the timings for each of the layers(in layersTimes)
            vector<double> layersTimes;
            double freq = getTickFrequency() / 1000;
            double t = net.getPerfProfile(layersTimes) / freq;
            string label = format("Mask-RCNN on 2.5 GHz Intel Core i7 CPU, Inference time for a frame : %0.0f ms", t);
            putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 0, 0));
    
            // Write the frame with the detection boxes
            Mat detectedFrame;
            frame.convertTo(detectedFrame, CV_8U);
    
            imshow(kWinName, frame);
    
        }
        cap.release();
        return 0;
    }
    
    // For each frame, extract the bounding box and mask for each detected object
    void postprocess(Mat& frame, const vector<Mat>& outs)
    {
        Mat outDetections = outs[0];
        Mat outMasks = outs[1];
    
        // Output size of masks is NxCxHxW where
        // N - number of detected boxes
        // C - number of classes (excluding background)
        // HxW - segmentation shape
        const int numDetections = outDetections.size[2];
        const int numClasses = outMasks.size[1];
    
        outDetections = outDetections.reshape(1, outDetections.total() / 7);
        for (int i = 0; i < numDetections; ++i)
        {
            float score = outDetections.at<float>(i, 2);
            if (score > confThreshold)
            {
                // Extract the bounding box
                int classId = static_cast<int>(outDetections.at<float>(i, 1));
                int left = static_cast<int>(frame.cols * outDetections.at<float>(i, 3));
                int top = static_cast<int>(frame.rows * outDetections.at<float>(i, 4));
                int right = static_cast<int>(frame.cols * outDetections.at<float>(i, 5));
                int bottom = static_cast<int>(frame.rows * outDetections.at<float>(i, 6));
    
                left = max(0, min(left, frame.cols - 1));
                top = max(0, min(top, frame.rows - 1));
                right = max(0, min(right, frame.cols - 1));
                bottom = max(0, min(bottom, frame.rows - 1));
                Rect box = Rect(left, top, right - left + 1, bottom - top + 1);
    
                // Extract the mask for the object
                Mat objectMask(outMasks.size[2], outMasks.size[3], CV_32F, outMasks.ptr<float>(i, classId));
    
                // Draw bounding box, colorize and show the mask on the image
                drawBox(frame, classId, score, box, objectMask);
    
            }
        }
    }
    
    // Draw the predicted bounding box, colorize and show the mask on the image
    void drawBox(Mat& frame, int classId, float conf, Rect box, Mat& objectMask)
    {
        //Draw a rectangle displaying the bounding box
        rectangle(frame, Point(box.x, box.y), Point(box.x + box.width, box.y + box.height), Scalar(255, 178, 50), 3);
    
        //Get the label for the class name and its confidence
        string label = format("%.2f", conf);
        if (!classes.empty())
        {
            CV_Assert(classId < (int)classes.size());
            label = classes[classId] + ":" + label;
        }
    
        //Display the label at the top of the bounding box
        int baseLine;
        Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
        box.y = max(box.y, labelSize.height);
        rectangle(frame, Point(box.x, box.y - round(1.5*labelSize.height)), Point(box.x + round(1.5*labelSize.width), box.y + baseLine), Scalar(255, 255, 255), FILLED);
        putText(frame, label, Point(box.x, box.y), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 0, 0), 1);
    
        Scalar color = colors[classId%colors.size()];
    
        // Resize the mask, threshold, color and apply it on the image
        resize(objectMask, objectMask, Size(box.width, box.height));
        Mat mask = (objectMask > maskThreshold);
        Mat coloredRoi = (0.3 * color + 0.7 * frame(box));
        coloredRoi.convertTo(coloredRoi, CV_8UC3);
    
        // Draw the contours on the image
        vector<Mat> contours;
        Mat hierarchy;
        mask.convertTo(mask, CV_8U);
        findContours(mask, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE);
        drawContours(coloredRoi, contours, -1, color, 5, LINE_8, hierarchy, 100);
        coloredRoi.copyTo(frame(box), mask);
    
    }

    https://github.com/spmallick/learnopencv/tree/master/Mask-RCNN

    https://www.learnopencv.com/deep-learning-based-object-detection-and-instance-segmentation-using-mask-r-cnn-in-opencv-python-c/

    line: (303,392) (313,104) (0.0532837,-0.178375,0.288),(0,0,0)

    0.0930815

    ----------------------------------------------------

    line: (304,393) (465,390) (0.0540282,-0.178375,0.288),(0,0,0)

    0.0931887

    ----------------------------------------------------

    line: (302,391) (314,34) (0.0525392,-0.178375,0.288),(-1.27422,-1.06591,1.721)

    0.798125

    ----------------------------------------------------

    line: (307,189) (312,34) (-0.096823,-0.176517,0.285),(-1.27422,-1.06591,1.721)

    0.737782

    ----------------------------------------------------

    line: (304,392) (512,385) (0.0532837,-0.178375,0.288),(0,0,0)

    0.0930815

    ----------------------------------------------------

    line: (307,395) (410,393) (0,0,0),(0.0540282,-0.178375,0.288)

    0.0931887

    ----------------------------------------------------

    line: (305,278) (313,34) (0,0,0),(-1.27422,-1.06591,1.721)

    0.830633

    ----------------------------------------------------

    line: (271,377) (279,130) (0.0421168,-0.178375,0.288),(0,0,0)

    0.0916397

    ----------------------------------------------------

    line: (272,378) (278,192) (0.0428612,-0.178375,0.288),(0,0,0)

    0.0917259

    ----------------------------------------------------

    line: (63,361) (275,354) (0.0301005,-0.177755,0.287),(0.0249073,-0.177755,0.287)

    0.00259657

    ----------------------------------------------------

    line: (308,38) (477,62) (-1.263,-1.07149,1.73),(0,0,0)

    0.828137

    ----------------------------------------------------

    line: (305,391) (311,198) (0.0525392,-0.178375,0.288),(-0.0901926,-0.176517,0.285)

    0.071372

    ----------------------------------------------------

    line: (307,394) (445,391) (0,0,0),(0.0525392,-0.178375,0.288)

    0.0929756

    ----------------------------------------------------

    line: (273,379) (276,292) (0.0436057,-0.178375,0.288),(-0.0210156,-0.177136,0.286)

    0.0323166

    ----------------------------------------------------

    line: (401,385) (512,389) (0.0480725,-0.178375,0.288),(0,0,0)

    0.0923694

    ----------------------------------------------------

    line: (315,35) (402,49) (-1.27346,-1.06901,1.726),(0,0,0)

    0.831336

    ----------------------------------------------------

    line: (418,384) (514,382) (0.047328,-0.178375,0.288),(0,0,0)

    0.0922733

    ----------------------------------------------------

    line: (176,359) (271,356) (0.0286167,-0.177755,0.287),(0,0,0)

    0.090022

    ----------------------------------------------------

    line: (385,386) (511,390) (0.0488169,-0.178375,0.288),(0,0,0)

    0.092467

    ----------------------------------------------------

    line: (67,359) (181,355) (0.0286167,-0.177755,0.287),(0,0,0)

    0.090022

    ----------------------------------------------------

    line: (311,37) (425,53) (-1.26747,-1.07149,1.73),(0,0,0)

    0.829843

    ----------------------------------------------------

    line: (275,131) (278,69) (-0.138573,-0.175278,0.283),(0,0,0)

    0.111719

    ----------------------------------------------------

    line: (66,360) (241,354) (0.0293586,-0.177755,0.287),(0.0249073,-0.177755,0.287)

    0.00222563

    ----------------------------------------------------

    line: (118,360) (275,355) (0.0293586,-0.177755,0.287),(0,0,0)

    0.0900817

    ----------------------------------------------------

    line: (441,383) (510,382) (0.0465835,-0.178375,0.288),(0,0,0)

    0.0921785

    ----------------------------------------------------

    line: (309,92) (310,37) (0,0,0),(-1.26747,-1.07149,1.73)

    0.829843

    ----------------------------------------------------

    line: (306,391) (308,321) (0.0525392,-0.178375,0.288),(0.000425389,-0.177755,0.287)

    0.0260588

    ----------------------------------------------------

    line: (274,248) (278,154) (0,0,0),(-0.121747,-0.175278,0.283)

    0.106706

    ----------------------------------------------------

    line: (454,384) (511,386) (0.047328,-0.178375,0.288),(0,0,0)

    0.0922733

    ----------------------------------------------------

    line: (362,387) (440,389) (0.0495614,-0.178375,0.288),(0,0,0)

    0.092566

    ----------------------------------------------------

    line: (221,359) (271,357) (0.0286167,-0.177755,0.287),(0,0,0)

    0.090022

    ----------------------------------------------------

    line: (344,390) (396,393) (0,0,0),(0.0540282,-0.178375,0.288)

    0.0931887

    ----------------------------------------------------

    line: (314,393) (376,395) (0.0540282,-0.178375,0.288),(0,0,0)

    0.0931887

    ----------------------------------------------------

    line: (115,355) (180,354) (0,0,0),(0.0249073,-0.177755,0.287)

    0.0897459

    ----------------------------------------------------

    line: (296,388) (358,391) (0,0,0),(0.0525392,-0.178375,0.288)

    0.0929756

    ----------------------------------------------------

    line: (449,329) (514,378) (0.00638257,-0.178375,0.288),(0,0,0)

    0.0892444

    常用模型下载地址:https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md

  • 相关阅读:
    Java 并发专题 :FutureTask 实现预加载数据 在线看电子书、浏览器浏览网页等
    Excel里的单元格提行
    Ubuntu各版本的历史发行界面
    CentOS常用命令、快照、克隆大揭秘
    虚拟网络编辑器的知识和出现的一些问题(没有VMnet0或VMnet8)
    CentOS图形界面下如何安装Eclipse和使用maven
    Hadoop MapReduce编程 API入门系列之mr编程快捷键活用技巧详解(四)
    Hadoop MapReduce概念学习系列之mr程序详谈(二十三)
    Hadoop MapReduce概念学习系列之mr的Shuffle(二十二)
    Hadoop MapReduce概念学习系列之JobTracker、ResourceManager、Task Tracker、NodeManager(二十一)
  • 原文地址:https://www.cnblogs.com/herd/p/10930397.html
Copyright © 2011-2022 走看看