zoukankan      html  css  js  c++  java
  • codeforces626E.Simple Skewness(三分)

    Define the simple skewness of a collection of numbers to be the collection's mean minus its median. You are given a list of n (not necessarily distinct) integers. Find the non-empty subset (with repetition) with the maximum simple skewness.

    The mean of a collection is the average of its elements. The median of a collection is its middle element when all of its elements are sorted, or the average of its two middle elements if it has even size.

    Input

    The first line of the input contains a single integer n (1 ≤ n ≤ 200 000) — the number of elements in the list.

    The second line contains n integers xi (0 ≤ xi ≤ 1 000 000) — the ith element of the list.

    Output

    In the first line, print a single integer k — the size of the subset.

    In the second line, print k integers — the elements of the subset in any order.

    If there are multiple optimal subsets, print any.

    Examples
    input
    4
    1 2 3 12
    
    output
    3
    1 2 12 
    
    input
    4
    1 1 2 2
    
    output
    3
    1 1 2 
    
    input
    2
    1 2
    
    output
    2
    

    1 2

    题意:给你n个数,让你找到一个非空子集合,使得这个子集合的平均数和中位数的差最大。

    思路:首先,这个产生最大值的子集合内含的数的个数一定是奇数(平均数不等于中位数),因为如果个数是偶数,那么我们可以减去中间较打的一个数,那么平均数减去中位数的值就会变大。我们可以枚举每一个数为中位数,然后三分找到最大的平均数。

    #include<iostream>
    #include<stdio.h>
    #include<stdlib.h>
    #include<string.h>
    #include<math.h>
    #include<vector>
    #include<map>
    #include<set>
    #include<queue>
    #include<stack>
    #include<string>
    #include<algorithm>
    using namespace std;
    typedef long long ll;
    #define inf 99999999
    #define pi acos(-1.0)
    #define maxn 200050
    ll a[maxn];
    ll n,m;
    ll sum[maxn];
    
    
    int main()
    {
        ll i,j;
        while(scanf("%lld",&n)!=EOF)
        {
            for(i=1;i<=n;i++){
                scanf("%I64d",&a[i]);
            }
            sort(a+1,a+1+n);
            sum[0]=0;
            for(i=1;i<=n;i++){
                sum[i]=sum[i-1]+a[i];
            }
            if(n==1 || n==2){
                printf("1
    ");
                printf("%I64d
    ",a[1]);continue;
            }
            ll l,r,d,m1,m2,t1,t2;
            ll mid=1,len=0,zong=0;
            ll zong1,mid1,len1;
            for(i=2;i<=n-1;i++){
                l=1;r=min(i-1,n-i);
                for(j=1;j<=100;j++){
                    m1=(2*l+r)/3;
                    m2=(l+2*r+2)/3; //向上取整
                    /*
                    d=(l+r)/2;
                    m1=d;
                    m2=(d+r)/2;
                    */
                    t1=sum[i]-sum[i-m1-1]+sum[n]-sum[n-m1];
                    t2=sum[i]-sum[i-m2-1]+sum[n]-sum[n-m2];
                    if(t1*(2*m2+1)<t2*(2*m1+1)){
                        l=m1+1;
                    }
                    else r=m2-1;
                }
                zong1=sum[i]-sum[i-l-1]+sum[n]-sum[n-l]-(2*l+1)*a[i];
                len1=l;
                mid1=i;
                if(zong1*(2*len+1)>zong*(2*len1+1) ){
                    zong=zong1;
                    len=len1;
                    mid=mid1;
                }
            }
            printf("%I64d
    ",len*2+1);
            int flag=1;
            for(i=mid-len;i<=mid;i++){
                if(flag){
                    flag=0;printf("%I64d",a[i]);
                }
                else{
                    printf(" %I64d",a[i]);
                }
            }
            for(i=n-len+1;i<=n;i++){
                printf(" %I64d",a[i]);
            }
            printf("
    ");
        }
        return 0;
    }


  • 相关阅读:
    python调用c/c++库函数方法小结(c++和python的整合)
    一个机器学习的好网站
    Notepad++支持列选择模式
    awk的效率和python split 效率对比
    python 中的反射,装饰器,with语句
    hierarchy 在大数据上聚类的利弊
    shell 某个日期前的某一天(待补充)
    通过 cgi 运行 python 在lighttp上
    (译)Node.js的全局变量
    (译)Node.js的模块-exports和module.exports
  • 原文地址:https://www.cnblogs.com/herumw/p/9464556.html
Copyright © 2011-2022 走看看