(2-sat)的模板题,首先得出题目中的二元关系为:对于有矛盾的(x_i,x_j),至多选择一个,那么连边(x_i
ightarrow x_j',x_j
ightarrow x_i')。
在这里这个关系是明确的关系,我们连边时只用连明确的关系即可。假设不选(x_i),我们也不知道(x_j)选不选,可选可不选,所以不用从(x_i')出发连边。
然后题目因为要求字典序最小,据说(trajan)缩点那样搞可能出问题,因为数据范围比较小,所以直接(O(nm))暴力染色就行了QAQ
代码如下:
/*
* Author: heyuhhh
* Created Time: 2019/11/29 14:52:58
*/
#include <iostream>
#include <algorithm>
#include <vector>
#include <cmath>
#include <set>
#include <map>
#include <cstring>
#include <iomanip>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
#define Local
#ifdef Local
#define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
void err() { std::cout << '
'; }
template<typename T, typename...Args>
void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
#else
#define dbg(...)
#endif
void pt() {std::cout << '
'; }
template<typename T, typename...Args>
void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 8005;
int n, m;
vector <int> g[N << 1];
int get(int x) {
if(x % 2) return x + 1;
return x - 1;
}
int cnt;
int col[N << 1], tmp[N];
bool paint(int x) {
if(col[x]) {
if(col[x] % 2 == 0) return false;
return true;
}
tmp[++cnt] = x;
col[x] = 1; col[get(x)] = 2;
for(auto y : g[x]) {
if(!paint(y)) return false;
}
return true;
}
bool work() {
memset(col, 0, sizeof(col));
for(int i = 1; i <= 2 * n; i++) {
if(col[i]) continue;
cnt = 0;
if(!paint(i)) {
for(int j = 1; j <= cnt; j++) col[tmp[j]] = col[get(tmp[j])] = 0;
cnt = 0;
if(!paint(get(i))) return false;
}
}
return true;
}
void run(){
for(int i = 1; i <= 2 * n; i++) g[i].clear();
for(int i = 1; i <= m; i++) {
int u, v; cin >> u >> v;
g[u].push_back(get(v));
g[v].push_back(get(u));
g[get(u)].push_back(v);
g[get(v)].push_back(u);
}
if(work()) {
for(int i = 1; i <= 2 * n; i++)
if(col[i] == 1) cout << i << '
';
} else cout << "NIE" << '
';
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(20);
while(cin >> n >> m) run();
return 0;
}