zoukankan      html  css  js  c++  java
  • 【LG4103】[HEOI2014]大工程

    【LG4103】[HEOI2014]大工程

    题面

    洛谷

    题解

    先建虚树,下面所有讨论均是在虚树上的。

    对于第一问:直接统计所有树边对答案的贡献即可。

    对于第(2,3)问:记(f[x])表示在(x)的子树内离(x)距离最远的关键点的距离,(g[x])表示在(x)的子树内离(x)距离最近的关键点的距离。

    具体更新以(f[x])为例:

    访问到(vin son_x)

    如果以前访问过的点中有关键点,则有(f[x]=max(f[x],f[v]+dis(u,v)+f[x]))

    每次还要向上传递,即(f[x]=max(f[x],f[v]+dis(u,v)))

    代码

    #include <iostream> 
    #include <cstdio> 
    #include <cstdlib> 
    #include <cstring> 
    #include <cmath> 
    #include <algorithm> 
    using namespace std; 
    inline int gi() { 
        register int data = 0, w = 1; 
        register char ch = 0; 
        while (!isdigit(ch) && ch != '-') ch = getchar(); 
        if (ch == '-') w = -1, ch = getchar(); 
        while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar(); 
        return w * data; 
    } 
    const int MAX_N = 1e6 + 5; 
    struct Graph { int to, next; } e[MAX_N << 2];
    int fir1[MAX_N], fir2[MAX_N], e_cnt;
    void clearGraph() {
    	memset(fir1, -1, sizeof(fir1)); 
    	memset(fir2, -1, sizeof(fir2)); 
    } 
    void Add_Edge(int *fir, int u, int v) { 
    	e[e_cnt] = (Graph){v, fir[u]}; 
    	fir[u] = e_cnt++; 
    }
    namespace Tree { 
    	int fa[MAX_N], dep[MAX_N], size[MAX_N], top[MAX_N], son[MAX_N], dfn[MAX_N], tim; 
    	void dfs1(int x) {
    		dfn[x] = ++tim; 
    	    size[x] = 1, dep[x] = dep[fa[x]] + 1; 
    		for (int i = fir1[x]; ~i; i = e[i].next) {
    			int v = e[i].to; if (v == fa[x]) continue; 
    			fa[v] = x; dfs1(v); size[x] += size[v]; 
    			if (size[v] > size[son[x]]) son[x] = v; 
    		} 
    	} 
    	void dfs2(int x, int tp) {
    		top[x] = tp; 
    	    if (son[x]) dfs2(son[x], tp); 
    		for (int i = fir1[x]; ~i; i = e[i].next) {
    			int v = e[i].to; if (v == fa[x] || v == son[x]) continue; 
    			dfs2(v, v); 
    		} 
    	} 
    	int LCA(int x, int y) { 
    		while (top[x] != top[y]) { 
    			if (dep[top[x]] < dep[top[y]]) swap(x, y); 
    			x = fa[top[x]]; 
    		} 
    		return dep[x] < dep[y] ? x : y; 
    	} 
    } 
    using Tree::LCA; using Tree::dfn; using Tree::dep; 
    int N, M, K, a[MAX_N];
    bool key[MAX_N];
    int f[MAX_N], g[MAX_N], s[MAX_N]; 
    bool cmp(int i, int j) { return dfn[i] < dfn[j]; } 
    void build() { 
    	static int stk[MAX_N], top; 
    	sort(&a[1], &a[K + 1], cmp); 
    	stk[top = 1] = 1; fir2[1] = -1;
    	e_cnt = 0; 
    	for (int i = 1; i <= K; i++) {
    		key[a[i]] = 1; 
    		if (a[i] == 1) continue; 
    		int lca = LCA(stk[top], a[i]); 
    		if (lca != stk[top]) { 
    			while (dfn[lca] < dfn[stk[top - 1]]) { 
    				int u = stk[top], v = stk[top - 1]; 
    				Add_Edge(fir2, u, v), Add_Edge(fir2, v, u); 
    				--top; 
    			} 
    			if (dfn[lca] > dfn[stk[top - 1]]) { 
    				fir2[lca] = -1; int u = stk[top], v = lca; 
    				Add_Edge(fir2, u, v), Add_Edge(fir2, v, u); 
    				stk[top] = lca; 
    			}
    			else { 
    				int u = lca, v = stk[top--]; 
    				Add_Edge(fir2, u, v), Add_Edge(fir2, v, u); 
    			} 
    		}
    		fir2[a[i]] = -1, stk[++top] = a[i]; 
    	} 
    	for (int i = 1; i < top; i++) {
    		int u = stk[i], v = stk[i + 1]; 
    		Add_Edge(fir2, u, v), Add_Edge(fir2, v, u); 
    	} 
    } 
    long long ans1;
    int ans2, ans3; 
    void Dp(int x, int fa) { 
    	s[x] = key[x], f[x] = 0, g[x] = (key[x] ? 0 : 1e9); 
    	for (int i = fir2[x]; ~i; i = e[i].next) { 
    		int v = e[i].to; if (v == fa) continue; 
    		Dp(v, x); 
    	} 
    	for (int i = fir2[x]; ~i; i = e[i].next) { 
    		int v = e[i].to, w = dep[v] - dep[x]; 
    		if (v == fa) continue; 
    		ans1 += 1ll * (K - s[v]) * s[v] * w; 
    		if (s[x] > 0) { 
    			ans2 = min(ans2, g[x] + w + g[v]); 
    			ans3 = max(ans3, f[x] + w + f[v]); 
    		} 
    		g[x] = min(g[x], g[v] + w); 
    	    f[x] = max(f[x], f[v] + w);
    		s[x] += s[v]; 
    	} 
    	key[x] = 0; 
    } 
    int main () {
    #ifndef ONLINE_JUDGE 
        freopen("cpp.in", "r", stdin); 
    #endif
    	clearGraph(); 
    	N = gi(); 
    	for (int i = 1; i < N; i++) { 
    		int u = gi(), v = gi(); 
    		Add_Edge(fir1, u, v), Add_Edge(fir1, v, u); 
    	}
    	Tree::dfs1(1), Tree::dfs2(1, 1); 
    	M = gi(); 
    	while (M--) { 
    		ans1 = 0, ans2 = 1e9, ans3 = 0; 
    		K = gi(); for (int i = 1; i <= K; i++) a[i] = gi(); 
    		build(); 
    		Dp(1, 0); 
    		printf("%lld %d %d
    ", ans1, ans2, ans3); 
    	} 
    	return 0; 
    } 
    
  • 相关阅读:
    问题大全
    redis学习笔记-03:redis安装
    redis学习笔记-02:为什么使用NoSQL数据库
    redis学习笔记-01:redis简介
    docker学习笔记-05:Docker安装mysql和redis
    docker学习笔记-06:自定义DockerFile生成镜像
    docker学习笔记-05:DockerFile解析
    全栈之路-杂篇-JPA多对多配置分析
    全栈之路-小程序API-JWT令牌详细剖析与使用
    全栈之路-小程序API-Json数据类型的序列化与反序列化
  • 原文地址:https://www.cnblogs.com/heyujun/p/10360235.html
Copyright © 2011-2022 走看看