zoukankan      html  css  js  c++  java
  • sklearn常见分类器的效果比较

    sklearn 是 python 下的机器学习库。

    scikit-learn的目的是作为一个“黑盒”来工作,即使用户不了解实现也能产生很好的结果。

    其功能非常强大,当然也有很多不足的地方,就比如说神经网络就只有一个RBM(不是人民币哈)。但是,不管怎样,首荐!!

    这个例子比较了几种分类器的效果,并直观的显示之

    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib.colors import ListedColormap
    #from sklearn.model_selection import train_test_split #废弃!!
    from sklearn.cross_validation import train_test_split
    from sklearn.preprocessing import StandardScaler
    from sklearn.datasets import make_moons, make_circles, make_classification
    from sklearn.neural_network import BernoulliRBM
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.svm import SVC
    from sklearn.gaussian_process import GaussianProcess
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
    from sklearn.naive_bayes import GaussianNB
    from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
    
    h = .02  # step size in the mesh
    
    names = ["Nearest Neighbors", "Linear SVM", "RBF SVM",
             "Decision Tree", "Random Forest", "AdaBoost",
             "Naive Bayes", "QDA", "Gaussian Process","Neural Net", ]
    
    classifiers = [
        KNeighborsClassifier(3),
        SVC(kernel="linear", C=0.025),
        SVC(gamma=2, C=1),
        DecisionTreeClassifier(max_depth=5),
        RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),
        AdaBoostClassifier(),
        GaussianNB(),
        QuadraticDiscriminantAnalysis(),
        #GaussianProcess(),
        #BernoulliRBM(),
        ]
    
    X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,
                               random_state=1, n_clusters_per_class=1)
    rng = np.random.RandomState(2)
    X += 2 * rng.uniform(size=X.shape)
    linearly_separable = (X, y)
    
    datasets = [make_moons(noise=0.3, random_state=0),
                make_circles(noise=0.2, factor=0.5, random_state=1),
                linearly_separable
                ]
    
    figure = plt.figure(figsize=(27, 9))
    i = 1
    # iterate over datasets
    for ds_cnt, ds in enumerate(datasets):
        # preprocess dataset, split into training and test part
        X, y = ds
        X = StandardScaler().fit_transform(X)
        X_train, X_test, y_train, y_test = 
            train_test_split(X, y, test_size=.4, random_state=42)
    
        x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
        y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
        xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                             np.arange(y_min, y_max, h))
    
        # just plot the dataset first
        cm = plt.cm.RdBu
        cm_bright = ListedColormap(['#FF0000', '#0000FF'])
        ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
        if ds_cnt == 0:
            ax.set_title("Input data")
        # Plot the training points
        ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)
        # and testing points
        ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6)
        ax.set_xlim(xx.min(), xx.max())
        ax.set_ylim(yy.min(), yy.max())
        ax.set_xticks(())
        ax.set_yticks(())
        i += 1
    
        # iterate over classifiers
        for name, clf in zip(names, classifiers):
            ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
            clf.fit(X_train, y_train)
            score = clf.score(X_test, y_test)
    
            # Plot the decision boundary. For that, we will assign a color to each
            # point in the mesh [x_min, m_max]x[y_min, y_max].
            if hasattr(clf, "decision_function"):
                Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
            else:
                Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]
    
            # Put the result into a color plot
            Z = Z.reshape(xx.shape)
            ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)
    
            # Plot also the training points
            ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)
            # and testing points
            ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright,
                       alpha=0.6)
    
            ax.set_xlim(xx.min(), xx.max())
            ax.set_ylim(yy.min(), yy.max())
            ax.set_xticks(())
            ax.set_yticks(())
            if ds_cnt == 0:
                ax.set_title(name)
            ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'),
                    size=15, horizontalalignment='right')
            i += 1
    
    plt.tight_layout()
    plt.show()

    效果图:

    说明:

    1.原始数据(三组)

    2.分类器名称(八个)

    3.对应的成绩 (score)

  • 相关阅读:
    拓扑排序学习
    快速排序+归并排序
    邻接表的两种实现(链表和数组模拟)
    一起学Windows Phone7开发(十四.一 Phone Task)
    一起学Windows Phone7开发(十四.四 Web Task)
    一起学Windows Phone7开发(十四.三 Multimedia Task)
    一起学Windows Phone7开发(十五. Device)
    一起学Windows Phone7开发(十四.五 Market Task)
    深入学习Windows Phone7(三. Visual State Manager)
    深入学习Windows Phone7(一. Reactive Extension)
  • 原文地址:https://www.cnblogs.com/hhh5460/p/5120082.html
Copyright © 2011-2022 走看看