zoukankan      html  css  js  c++  java
  • Codeforces #663 div.2 D

    题目

    A binary matrix is called good if every even length square sub-matrix has an odd number of ones.

    Given a binary matrix a consisting of n rows and m columns, determine the minimum number of cells you need to change to make it good, or report that there is no way to make it good at all.

    All the terms above have their usual meanings — refer to the Notes section for their formal definitions.

    Input
    The first line of input contains two integers n and m (1≤n≤m≤106 and n⋅m≤106) — the number of rows and columns in a, respectively.

    The following n lines each contain m characters, each of which is one of 0 and 1. If the j-th character on the i-th line is 1, then ai,j=1. Similarly, if the j-th character on the i-th line is 0, then ai,j=0.

    Output
    Output the minimum number of cells you need to change to make a good, or output −1 if it's not possible at all.

    Examples
    inputCopy
    3 3
    101
    001
    110
    outputCopy
    2
    inputCopy
    7 15
    000100001010010
    100111010110001
    101101111100100
    010000111111010
    111010010100001
    000011001111101
    111111011010011
    outputCopy
    -1

    思路

    显然当n和m有一个为1或两者都大于4那么都不成立(前者为0),那么数据范围就被压缩到了2到3之间,因为很小,所以我们可以预处理出来合法的相邻两列的状态,然后状态dp去枚举,做法类似于炮兵阵地。

    代码实现

    #include<cstdio>
    #include<algorithm>
    #include<vector>
    #include<queue>
    #include<map>
    #include<set>
    #include<iostream>
    #include<cstring>
    #include<cmath>
    using namespace std;
    #define rep(i,f_start,f_end) for (int i=f_start;i<=f_end;++i)
    #define per(i,n,a) for (int i=n;i>=a;i--)
    #define MT(x,i) memset(x,i,sizeof(x) )
    #define rev(i,start,end) for (int i=start;i<end;i++)
    #define inf 0x7f7f7f7f
    #define mp(x,y) make_pair(x,y)
    #define lowbit(x) (x&-x)
    #define MOD 1000000007
    #define exp 1e-8
    #define N 1000005 
    #define fi first 
    #define se second
    #define pb push_back
    typedef long long ll;
    typedef pair<int ,int> PII;
    ll gcd (ll a,ll b) {return b?gcd (b,a%b):a; }
    
    const int maxn=1000005;
    int n,m;
    int ans=inf,dp[maxn][8],a[4][maxn];
    bool st[8][8]={false};
    const int mod=1e9+7;
    
    int calc (int x) {
        int ans=0;
        while (x) {
            if (x&1) ans++;
            x>>=1;
        }
        return ans;
    }
    
    int main () {
    //    freopen ("data.in","r",stdin);
       cin>>n>>m;
       if (n>=4&&m>=4) {
           cout<<"-1"<<endl;
           return 0;
       }
       if (n==1||m==1) {
           cout<<0<<endl;
           return 0;
       }
       rep (i,1,n)
        rep (j,1,m) scanf ("%1d",&a[i][j]);
       rev (i,0,8) 
        rev (j,0,8) {
            int t[3];
            t[0]=t[1]=t[2]=0;
            rev (p,0,n) {
                if ((1<<p)&i) t[p]++;
                if ((1<<p)&j) t[p]++;
            }
            bool flag=1;
            rev (p,0,n-1) {
                if (!((t[p]+t[p+1])&1)) flag=0;
            }
            if (flag) st[i][j]=1;
        } 
        MT (dp,0x7f7f7f7f);
        rev (i,0,8) dp[0][i]=0;
        rep (i,1,m) {
            int now=a[1][i]+a[2][i]*2+a[3][i]*4;
            rev (j,0,8) {
                rev (p,0,8) {
                    if (!st[j][p]) continue;
                    dp[i][j]=min (dp[i][j],dp[i-1][p]+calc (now^j));
                }
            }
        }
        rev (i,0,8) ans=min (ans,dp[m][i]);
        printf ("%d
    ",ans);
       
    //    fclose (stdin);
       return 0;
    }
    
    
  • 相关阅读:
    poj 2262 筛法求素数(巧妙利用数组下标!)
    BestCoder Round #65 (ZYB's Premutation)
    BestCoder Round #65 (ZYB's Game)
    BestCoder Round #65 (ZYB's Biology)
    筛法求素数
    常见OJ提交结果对照表
    CSS3伸缩盒Flexible Box
    移动开发屏幕适配分析
    用PHP抓取页面并分析
    安装最新版本的PHPUnit后,不能使用
  • 原文地址:https://www.cnblogs.com/hhlya/p/13504414.html
Copyright © 2011-2022 走看看