zoukankan      html  css  js  c++  java
  • POJ 3264 Balanced Lineup(RMQ)

    Balanced Lineup
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 36513   Accepted: 17103
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q.
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ ABN), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    求区间最大最小值差

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <string>
    #include <cmath>
    #include <vector>
    #include <queue>
    #include <map>
    #include <set>
    #include <stack>
    #include <algorithm>
    using namespace std;
    #define root 1,n,1
    #define lson l,mid,rt<<1
    #define rson mid+1,r,rt<<1|1
    #define lr rt<<1
    #define rr rt<<1|1
    typedef long long LL;
    const int oo = 1e9+7;
    const double PI = acos(-1.0);
    const double eps = 1e-6 ;
    const int N =  50010;
    const int mod = 2333333;
    int dp_m[N][20] , dp_M[N][20] , mm[N] , b[N] , n , m ;
    void initRMQ( int n ) {
        mm[0] = -1 ;
        for( int i = 1 ; i <= n ; ++i ){
            mm[i] = ( (i&(i-1)) ==0 )?mm[i-1]+1:mm[i-1];
            dp_m[i][0]=dp_M[i][0]=b[i];
        }
        for(int j = 1 ; j <= mm[n] ; ++j ) {
            for( int i = 1 ; i+(1<<j)-1<=n ; ++i ) {
                dp_M[i][j] = max( dp_M[i][j-1] ,dp_M[i+(1<<(j-1))][j-1]);
                dp_m[i][j] = min( dp_m[i][j-1] ,dp_m[i+(1<<(j-1))][j-1]);
            }
        }
    }
    int rmq( int x , int y ){
        int k = mm[y-x+1];
        return max(dp_M[x][k],dp_M[y-(1<<k)+1][k]) - min(dp_m[x][k],dp_m[y-(1<<k)+1][k]) ;
    }
    
    int main()
    {
        #ifdef LOCAL
            freopen("in.txt","r",stdin);
    //        freopen("out.txt","w",stdout);
        #endif // LOCAL
        int _ ,x ,y , c ;
        while( ~scanf("%d%d",&n,&m) ) {
            for( int i =1 ; i <= n ; ++i ){
                scanf("%d",&b[i]);
            }
            initRMQ(n);
            while(m--) {
                scanf("%d%d",&x,&y);
                printf("%d
    ",rmq(x,y));
            }
        }
    }
    View Code
    only strive for your goal , can you make your dream come true ?
  • 相关阅读:
    Ext.Ajax.request 传值问题
    类型反射与晚期绑定
    .net使用外部程序集拓展功能
    C#求解哈夫曼树
    几种获取操作系统语言的方法及其相似点与不同点
    C#调用非托管代码(C++方法)的2种方式
    构建可终结类型和可处置类型
    dockercompose 安装配置neo4j
    Windows 7 SDK Fails to Install with Return Code 5100 (GRMSDK_EN_DVD.iso)
    mysql密码修改方法
  • 原文地址:https://www.cnblogs.com/hlmark/p/4248353.html
Copyright © 2011-2022 走看看