zoukankan      html  css  js  c++  java
  • POJ 3264 Balanced Lineup(RMQ)

    Balanced Lineup
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 36513   Accepted: 17103
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q.
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ ABN), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    求区间最大最小值差

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <string>
    #include <cmath>
    #include <vector>
    #include <queue>
    #include <map>
    #include <set>
    #include <stack>
    #include <algorithm>
    using namespace std;
    #define root 1,n,1
    #define lson l,mid,rt<<1
    #define rson mid+1,r,rt<<1|1
    #define lr rt<<1
    #define rr rt<<1|1
    typedef long long LL;
    const int oo = 1e9+7;
    const double PI = acos(-1.0);
    const double eps = 1e-6 ;
    const int N =  50010;
    const int mod = 2333333;
    int dp_m[N][20] , dp_M[N][20] , mm[N] , b[N] , n , m ;
    void initRMQ( int n ) {
        mm[0] = -1 ;
        for( int i = 1 ; i <= n ; ++i ){
            mm[i] = ( (i&(i-1)) ==0 )?mm[i-1]+1:mm[i-1];
            dp_m[i][0]=dp_M[i][0]=b[i];
        }
        for(int j = 1 ; j <= mm[n] ; ++j ) {
            for( int i = 1 ; i+(1<<j)-1<=n ; ++i ) {
                dp_M[i][j] = max( dp_M[i][j-1] ,dp_M[i+(1<<(j-1))][j-1]);
                dp_m[i][j] = min( dp_m[i][j-1] ,dp_m[i+(1<<(j-1))][j-1]);
            }
        }
    }
    int rmq( int x , int y ){
        int k = mm[y-x+1];
        return max(dp_M[x][k],dp_M[y-(1<<k)+1][k]) - min(dp_m[x][k],dp_m[y-(1<<k)+1][k]) ;
    }
    
    int main()
    {
        #ifdef LOCAL
            freopen("in.txt","r",stdin);
    //        freopen("out.txt","w",stdout);
        #endif // LOCAL
        int _ ,x ,y , c ;
        while( ~scanf("%d%d",&n,&m) ) {
            for( int i =1 ; i <= n ; ++i ){
                scanf("%d",&b[i]);
            }
            initRMQ(n);
            while(m--) {
                scanf("%d%d",&x,&y);
                printf("%d
    ",rmq(x,y));
            }
        }
    }
    View Code
    only strive for your goal , can you make your dream come true ?
  • 相关阅读:
    通俗易懂----欧几里得算法
    安卓贴图源码--->记录旋转后位置..类似in/百度魔图
    wait、notify、sleep、interrupt对比分析
    安卓内存泄漏及检测内存泄漏
    美团多渠道打包
    高版本api在低版本中的兼容
    常用工具
    双守护进程(不死service)-5.0系统以下
    安卓log4k问题解决
    10、面向对象以及winform的简单运用(isMdicontainer的设置、timer控件进行倒计时的制作)
  • 原文地址:https://www.cnblogs.com/hlmark/p/4248353.html
Copyright © 2011-2022 走看看