zoukankan      html  css  js  c++  java
  • Chapter Four, Time As a Variable: Time-Series Analysis

    the main components of every time series: Trend, Seasonality, Noise and Other. (大势,小周期,噪音和其他)。

    以下一段具体解释。

    The trend may be linear or nonlinear, and we may want to investigate its magnitude. The
    seasonality pattern may be either additive or multiplicative. In the first case, the seasonal
    change has the same absolute size no matter what the magnitude of the current baseline of
    the series is; in the latter case, the seasonal change has the same relative size compared
    with the current magnitude of the series. Noise (i.e., some form of random variation) is
    almost always part of a time series. Finding ways to reduce the noise in the data is usually
    a significant part of the analysis process. Finally, “other” includes anything else that we
    may observe in a time series, such as particular significant changes in overall behavior,
    special outliers, missing data—anything remarkable at all.

    然后就是: Description, Prediction, and Control. 

    Smoothing

    窗口平滑,加权窗口平滑,高斯加权窗口平滑。

    以上都有缺点:1, 无法评估效果,不能重复。2,由于窗口问题,不能接近真实值。3,对于范围外的点没法算,也就是不能预测。

    克服上述缺点的方法:exponential smoothing or Holt–Winters method

    https://gist.github.com/andrequeiroz/5888967

    # Holt-Winters algorithms to forecasting
    # Coded in Python 2 by: Andre Queiroz
    # Description: This module contains three exponential smoothing algorithms. They are Holt's linear trend method and Holt-Winters seasonal methods (additive and multiplicative).
    # References:
    #  Hyndman, R. J.; Athanasopoulos, G. (2013) Forecasting: principles and practice. http://otexts.com/fpp/. Accessed on 07/03/2013.
    #  Byrd, R. H.; Lu, P.; Nocedal, J. A Limited Memory Algorithm for Bound Constrained Optimization, (1995), SIAM Journal on Scientific and Statistical Computing, 16, 5, pp. 1190-1208.
     
    from sys import exit
    from math import sqrt
    from numpy import array
    from scipy.optimize import fmin_l_bfgs_b
     
    def RMSE(params, *args):
     
        Y = args[0]
        type = args[1]
        rmse = 0
     
        if type == 'linear':
     
            alpha, beta = params
            a = [Y[0]]
            b = [Y[1] - Y[0]]
            y = [a[0] + b[0]]
     
            for i in range(len(Y)):
     
                a.append(alpha * Y[i] + (1 - alpha) * (a[i] + b[i]))
                b.append(beta * (a[i + 1] - a[i]) + (1 - beta) * b[i])
                y.append(a[i + 1] + b[i + 1])
     
        else:
     
            alpha, beta, gamma = params
            m = args[2]        
            a = [sum(Y[0:m]) / float(m)]
            b = [(sum(Y[m:2 * m]) - sum(Y[0:m])) / m ** 2]
     
            if type == 'additive':
     
                s = [Y[i] - a[0] for i in range(m)]
                y = [a[0] + b[0] + s[0]]
     
                for i in range(len(Y)):
     
                    a.append(alpha * (Y[i] - s[i]) + (1 - alpha) * (a[i] + b[i]))
                    b.append(beta * (a[i + 1] - a[i]) + (1 - beta) * b[i])
                    s.append(gamma * (Y[i] - a[i] - b[i]) + (1 - gamma) * s[i])
                    y.append(a[i + 1] + b[i + 1] + s[i + 1])
     
            elif type == 'multiplicative':
     
                s = [Y[i] / a[0] for i in range(m)]
                y = [(a[0] + b[0]) * s[0]]
     
                for i in range(len(Y)):
     
                    a.append(alpha * (Y[i] / s[i]) + (1 - alpha) * (a[i] + b[i]))
                    b.append(beta * (a[i + 1] - a[i]) + (1 - beta) * b[i])
                    s.append(gamma * (Y[i] / (a[i] + b[i])) + (1 - gamma) * s[i])
                    y.append(a[i + 1] + b[i + 1] + s[i + 1])
     
            else:
     
                exit('Type must be either linear, additive or multiplicative')
            
        rmse = sqrt(sum([(m - n) ** 2 for m, n in zip(Y, y[:-1])]) / len(Y))
     
        return rmse
     
    def linear(x, fc, alpha = None, beta = None):
     
        Y = x[:]
     
        if (alpha == None or beta == None):
     
            initial_values = array([0.3, 0.1])
            boundaries = [(0, 1), (0, 1)]
            type = 'linear'
     
            parameters = fmin_l_bfgs_b(RMSE, x0 = initial_values, args = (Y, type), bounds = boundaries, approx_grad = True)
            alpha, beta = parameters[0]
     
        a = [Y[0]]
        b = [Y[1] - Y[0]]
        y = [a[0] + b[0]]
        rmse = 0
     
        for i in range(len(Y) + fc):
     
            if i == len(Y):
                Y.append(a[-1] + b[-1])
     
            a.append(alpha * Y[i] + (1 - alpha) * (a[i] + b[i]))
            b.append(beta * (a[i + 1] - a[i]) + (1 - beta) * b[i])
            y.append(a[i + 1] + b[i + 1])
     
        rmse = sqrt(sum([(m - n) ** 2 for m, n in zip(Y[:-fc], y[:-fc - 1])]) / len(Y[:-fc]))
     
        return Y[-fc:], alpha, beta, rmse
     
    def additive(x, m, fc, alpha = None, beta = None, gamma = None):
     
        Y = x[:]
     
        if (alpha == None or beta == None or gamma == None):
     
            initial_values = array([0.3, 0.1, 0.1])
            boundaries = [(0, 1), (0, 1), (0, 1)]
            type = 'additive'
     
            parameters = fmin_l_bfgs_b(RMSE, x0 = initial_values, args = (Y, type, m), bounds = boundaries, approx_grad = True)
            alpha, beta, gamma = parameters[0]
     
        a = [sum(Y[0:m]) / float(m)]
        b = [(sum(Y[m:2 * m]) - sum(Y[0:m])) / m ** 2]
        s = [Y[i] - a[0] for i in range(m)]
        y = [a[0] + b[0] + s[0]]
        rmse = 0
     
        for i in range(len(Y) + fc):
     
            if i == len(Y):
                Y.append(a[-1] + b[-1] + s[-m])
     
            a.append(alpha * (Y[i] - s[i]) + (1 - alpha) * (a[i] + b[i]))
            b.append(beta * (a[i + 1] - a[i]) + (1 - beta) * b[i])
            s.append(gamma * (Y[i] - a[i] - b[i]) + (1 - gamma) * s[i])
            y.append(a[i + 1] + b[i + 1] + s[i + 1])
     
        rmse = sqrt(sum([(m - n) ** 2 for m, n in zip(Y[:-fc], y[:-fc - 1])]) / len(Y[:-fc]))
     
        return Y[-fc:], alpha, beta, gamma, rmse
     
    def multiplicative(x, m, fc, alpha = None, beta = None, gamma = None):
     
        Y = x[:]
     
        if (alpha == None or beta == None or gamma == None):
     
            initial_values = array([0.0, 1.0, 0.0])
            boundaries = [(0, 1), (0, 1), (0, 1)]
            type = 'multiplicative'
     
            parameters = fmin_l_bfgs_b(RMSE, x0 = initial_values, args = (Y, type, m), bounds = boundaries, approx_grad = True)
            alpha, beta, gamma = parameters[0]
     
        a = [sum(Y[0:m]) / float(m)]
        b = [(sum(Y[m:2 * m]) - sum(Y[0:m])) / m ** 2]
        s = [Y[i] / a[0] for i in range(m)]
        y = [(a[0] + b[0]) * s[0]]
        rmse = 0
     
        for i in range(len(Y) + fc):
     
            if i == len(Y):
                Y.append((a[-1] + b[-1]) * s[-m])
     
            a.append(alpha * (Y[i] / s[i]) + (1 - alpha) * (a[i] + b[i]))
            b.append(beta * (a[i + 1] - a[i]) + (1 - beta) * b[i])
            s.append(gamma * (Y[i] / (a[i] + b[i])) + (1 - gamma) * s[i])
            y.append((a[i + 1] + b[i + 1]) * s[i + 1])
     
        rmse = sqrt(sum([(m - n) ** 2 for m, n in zip(Y[:-fc], y[:-fc - 1])]) / len(Y[:-fc]))
     
        return Y[-fc:], alpha, beta, gamma, rmse
    View Code

    http://adorio-research.org/wordpress/?p=1230

    def holtwinters(y, alpha, beta, gamma, c, debug=True):
        """
        y - time series data.
        alpha , beta, gamma - exponential smoothing coefficients 
                                          for level, trend, seasonal components.
        c -  extrapolated future data points.
              4 quarterly
              7 weekly.
              12 monthly
     
     
        The length of y must be a an integer multiple  (> 2) of c.
        """
        #Compute initial b and intercept using the first two complete c periods.
        ylen =len(y)
        if ylen % c !=0:
            return None
        fc =float(c)
        ybar2 =sum([y[i] for i in range(c, 2 * c)])/ fc
        ybar1 =sum([y[i] for i in range(c)]) / fc
        b0 =(ybar2 - ybar1) / fc
        if debug: print "b0 = ", b0
     
        #Compute for the level estimate a0 using b0 above.
        tbar  =sum(i for i in range(1, c+1)) / fc
        print tbar
        a0 =ybar1  - b0 * tbar
        if debug: print "a0 = ", a0
     
        #Compute for initial indices
        I =[y[i] / (a0 + (i+1) * b0) for i in range(0, ylen)]
        if debug: print "Initial indices = ", I
     
        S=[0] * (ylen+ c)
        for i in range(c):
            S[i] =(I[i] + I[i+c]) / 2.0
     
        #Normalize so S[i] for i in [0, c)  will add to c.
        tS =c / sum([S[i] for i in range(c)])
        for i in range(c):
            S[i] *=tS
            if debug: print "S[",i,"]=", S[i]
     
        # Holt - winters proper ...
        if debug: print "Use Holt Winters formulae"
        F =[0] * (ylen+ c)   
     
        At =a0
        Bt =b0
        for i in range(ylen):
            Atm1 =At
            Btm1 =Bt
            At =alpha * y[i] / S[i] + (1.0-alpha) * (Atm1 + Btm1)
            Bt =beta * (At - Atm1) + (1- beta) * Btm1
            S[i+c] =gamma * y[i] / At + (1.0 - gamma) * S[i]
            F[i]=(a0 + b0 * (i+1)) * S[i]        
            print "i=", i+1, "y=", y[i], "S=", S[i], "Atm1=", Atm1, "Btm1=",Btm1, "At=", At, "Bt=", Bt, "S[i+c]=", S[i+c], "F=", F[i]
            print i,y[i],  F[i]
        #Forecast for next c periods:
        for m in range(c):
            print "forecast:", (At + Bt* (m+1))* S[ylen + m]
     
    # the time-series data.
    y =[146, 96, 59, 133, 192, 127, 79, 186, 272, 155, 98, 219]
     
    holtwinters(y, 0.2, 0.1, 0.05, 4)
    View Code
  • 相关阅读:
    (转)Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks(更快的RCNN:通过区域提议网络实现实时)
    vi常用命令
    Windows与Ubuntu通过ssh传文件
    Windows建立FTP服务器与Ubuntu互传文件
    备忘
    一些大牛博客地址
    springboot、springcloud学习记录
    我的git记录
    svn
    我的linux命令记录
  • 原文地址:https://www.cnblogs.com/hluo/p/4065148.html
Copyright © 2011-2022 走看看