题目来源:https://www.acwing.com/problem/content/3/
基本思考框架
C++代码
#include<iostream>
using namespace std;
const int N = 1010;
int f[N][N];
int v[N],w[N];
int main()
{
int n,m;
cin>>n>>m;
for(int i = 1 ; i <= n ;i ++)
{
cin>>v[i]>>w[i];
}
for(int i = 1 ; i<=n ;i++)
for(int j = 0 ; j<=m ;j++)
{
for(int k = 0 ; k*v[i]<=j ; k++)
f[i][j] = max(f[i][j],f[i-1][j-k*v[i]]+k*w[i]);
}
cout<<f[n][m]<<endl;
}
优化思路
我们列举一下更新次序的内部关系:
f[i , j ] = max( f[i-1,j] , f[i-1,j-v]+w , f[i-1,j-2*v]+2*w , f[i-1,j-3*v]+3*w , .....)
f[i , j-v]= max( f[i-1,j-v] , f[i-1,j-2*v] + w , f[i-1,j-2*v]+2*w , .....)
由上两式,可得出如下递推关系:
f[i][j]=max(f[i,j-v]+w , f[i-1][j])
有了上面的关系,那么其实k循环可以不要了,核心代码优化成这样:
for(int i = 1 ; i <=n ;i++)
for(int j = 0 ; j <=m ;j++)
{
f[i][j] = f[i-1][j];
if((j-v[i]>=0)
f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]);
}
这个代码和01背包的非优化写法很像啊!!!我们对比一下,下面是01背包的
核心代码
for(int i = 1 ; i <= n ; i++)
for(int j = 0 ; j <= m ; j ++)
{
f[i][j] = f[i-1][j];
if(j-v[i]>=0)
f[i][j] = max(f[i][j],f[i-1][j-v[i]]+w[i]);
}
两个代码其实只有一句不同(注意下标)
f[i][j] = max(f[i][j],f[i-1][j-v[i]]+w[i]);//01背包
f[i][j] = max(f[i][j],f[i][j-v[i]]+w[i]);//完全背包问题
因为和01背包代码很相像,我们很容易想到进一步优化。核心代码可以改成下面这样
for(int i = 1 ; i<=n ;i++)
for(int j = v[i] ; j<=m ;j++)//注意了,这里的j是从小到大枚举,和01背包不一样
{
f[j] = max(f[j],f[j-v[i]]+w[i]);
}
综上所述,完全背包的最终写法如下:
#include<iostream>
using namespace std;
const int N = 1010;
int f[N];
int v[N],w[N];
int main()
{
int n,m;
cin>>n>>m;
for(int i = 1 ; i <= n ;i ++)
{
cin>>v[i]>>w[i];
}
for(int i = 1 ; i<=n ;i++)
for(int j = v[i] ; j<=m ;j++)
{
f[j] = max(f[j],f[j-v[i]]+w[i]);
}
cout<<f[m]<<endl;
}
作者:在线白给
链接:https://www.acwing.com/solution/content/5345/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。