zoukankan      html  css  js  c++  java
  • python开发_pickle

    pickle模块使用的数据格式是python专用的,并且不同版本不向后兼容,同时也不能被其他语言说识别。要和其他语言交互,可以使用内置的json包使用pickle模块你可以把Python对象直接保存到文件,而不需要把他们转化为字符串,也不用底层的文件访问操作把它们写入到一个二进制文件里。 pickle模块会创建一个python语言专用的二进制格式,你基本上不用考虑任何文件细节,它会帮你干净利落地完成读写独享操作,唯一需要的只是一个合法的文件句柄。
            pickle模块中的两个主要函数是dump()和load()。dump()函数接受一个文件句柄和一个数据对象作为参数,把数据对象以特定的格式保存到给定的文件中。当我们使用load()函数从文件中取出已保存的对象时,pickle知道如何恢复这些对象到它们本来的格式。
            dumps()函数执行和dump() 函数相同的序列化。取代接受流对象并将序列化后的数据保存到磁盘文件,这个函数简单的返回序列化的数据。
            loads()函数执行和load() 函数一样的反序列化。取代接受一个流对象并去文件读取序列化后的数据,它接受包含序列化后的数据的str对象, 直接返回的对象。
            cPickle是pickle得一个更快得C语言编译版本。
            pickle和cPickle相当于java的序列化和反序列化操作

    以上来源:http://www.2cto.com/kf/201009/74973.html

    下面是python的API中的Example:

     1 # Simple example presenting how persistent ID can be used to pickle
     2 # external objects by reference.
     3 
     4 import pickle
     5 import sqlite3
     6 from collections import namedtuple
     7 
     8 # Simple class representing a record in our database.
     9 MemoRecord = namedtuple("MemoRecord", "key, task")
    10 
    11 class DBPickler(pickle.Pickler):
    12 
    13     def persistent_id(self, obj):
    14         # Instead of pickling MemoRecord as a regular class instance, we emit a
    15         # persistent ID.
    16         if isinstance(obj, MemoRecord):
    17             # Here, our persistent ID is simply a tuple, containing a tag and a
    18             # key, which refers to a specific record in the database.
    19             return ("MemoRecord", obj.key)
    20         else:
    21             # If obj does not have a persistent ID, return None. This means obj
    22             # needs to be pickled as usual.
    23             return None
    24 
    25 
    26 class DBUnpickler(pickle.Unpickler):
    27 
    28     def __init__(self, file, connection):
    29         super().__init__(file)
    30         self.connection = connection
    31 
    32     def persistent_load(self, pid):
    33         # This method is invoked whenever a persistent ID is encountered.
    34         # Here, pid is the tuple returned by DBPickler.
    35         cursor = self.connection.cursor()
    36         type_tag, key_id = pid
    37         if type_tag == "MemoRecord":
    38             # Fetch the referenced record from the database and return it.
    39             cursor.execute("SELECT * FROM memos WHERE key=?", (str(key_id),))
    40             key, task = cursor.fetchone()
    41             return MemoRecord(key, task)
    42         else:
    43             # Always raises an error if you cannot return the correct object.
    44             # Otherwise, the unpickler will think None is the object referenced
    45             # by the persistent ID.
    46             raise pickle.UnpicklingError("unsupported persistent object")
    47 
    48 
    49 def main():
    50     import io
    51     import pprint
    52 
    53     # Initialize and populate our database.
    54     conn = sqlite3.connect(":memory:")
    55     cursor = conn.cursor()
    56     cursor.execute("CREATE TABLE memos(key INTEGER PRIMARY KEY, task TEXT)")
    57     tasks = (
    58         'give food to fish',
    59         'prepare group meeting',
    60         'fight with a zebra',
    61         )
    62     for task in tasks:
    63         cursor.execute("INSERT INTO memos VALUES(NULL, ?)", (task,))
    64 
    65     # Fetch the records to be pickled.
    66     cursor.execute("SELECT * FROM memos")
    67     memos = [MemoRecord(key, task) for key, task in cursor]
    68     # Save the records using our custom DBPickler.
    69     file = io.BytesIO()
    70     DBPickler(file).dump(memos)
    71 
    72     print("Pickled records:")
    73     pprint.pprint(memos)
    74 
    75     # Update a record, just for good measure.
    76     cursor.execute("UPDATE memos SET task='learn italian' WHERE key=1")
    77 
    78     # Load the records from the pickle data stream.
    79     file.seek(0)
    80     memos = DBUnpickler(file, conn).load()
    81 
    82     print("Unpickled records:")
    83     pprint.pprint(memos)
    84 
    85 
    86 if __name__ == '__main__':
    87     main()

    运行效果:

  • 相关阅读:
    C语言和go语言之间的交互
    Elasticsearch笔记九之优化
    Elasticsearch笔记八之脑裂
    Elasticsearch笔记七之setting,mapping,分片查询方式
    Elasticsearch笔记六之中文分词器及自定义分词器
    Elasticsearch笔记四之配置参数与核心概念
    Elasticsearch笔记三之版本控制和插件
    Elasticsearch笔记二之Curl工具基本操作
    Elasticsearch笔记五之java操作es
    Python处理Excel表格
  • 原文地址:https://www.cnblogs.com/hongten/p/hongten_python_pickle.html
Copyright © 2011-2022 走看看