zoukankan      html  css  js  c++  java
  • Educational Codeforces Round 85 (Rated for Div. 2) 简要题解

    Educational Codeforces Round 85 (Rated for Div. 2)

    A:

    int T, n, a[N], b[N];
    int main() {
    	scanf("%d", &T);
    	while(T --) {
    		scanf("%d", &n);
    		bool tag = 1;
    		for(int i = 1; i <= n; i ++) {
    			scanf("%d%d", a + i, b + i);
    			tag &= a[i] >= b[i];
    			if(i > 1) {
    				tag &= a[i] >= a[i - 1];
    				tag &= b[i] >= b[i - 1];
    				tag &= a[i] - a[i - 1] >= b[i] - b[i - 1];
    			}
    		}
    		puts(tag ? "YES" : "NO");
    	}
    	return 0;
    } 
    

    B:假设答案为(k),肯定是选最富的(k)个人均分一下,排序check一下即可。

    int T, n, x, a[N];
    int main() {
    	scanf("%d", &T);
    	while(T --) {
    		scanf("%d%d", &n, &x);
    		int res = 0;
    		for(int i = 1; i <= n; i ++) {
    			scanf("%d", a + i);
    		}
    		sort(a + 1, a + n + 1, greater<int>());
    		ll sum = 0;
    		for(int i = 1; i <= n; i ++) {
    			sum += a[i];
    			if(sum >= 1ll * x * i) {
    				res = i;
    			}
    		}
    		printf("%d
    ", res);
    	}
    	return 0;
    } 
    

    C:先确定最先打哪个怪(x),然后最优打怪方案肯定是(x,x+1,...,n,1,..,x-1),断环为链即可。

    int T, n;
    ll a[N], b[N], sum[N];
    int main() {
    	scanf("%d", &T);
    	while(T --) {
    		scanf("%d", &n);
    		for(int i = 1; i <= n; i ++) {
    			scanf("%lld%lld", a + i, b + i);
    			a[i + n] = a[i]; b[i + n] = b[i];
    		}
    		for(int i = 1; i <= 2 * n; i ++) {
    			sum[i] = sum[i - 1] + max(0ll, a[i] - b[i - 1]);
    		}
    		ll ans = 2e18;
    		for(int i = 1; i <= n; i ++) {
    			ans = min(ans, sum[i + n - 1] - sum[i] + a[i]);
    		}
    		printf("%lld
    ", ans);
    	}
    	return 0;
    }
    

    D:自己模拟一下,发现最优路径是:

    (1,2,1,3,..,1,n)(2,3,2,4,2,...,2,n)(...)(1)

    直接模拟即可。

    int T, n, len, seq[N];
    ll l, r;
    void getseq(int u) {
    	for(int i = u + 1; i <= n; i ++) {
    		seq[++ len] = u;
    		seq[++ len] = i;
    	}
    }
    int main() {
    	scanf("%d", &T);
    	while(T --) {
    		scanf("%d%lld%lld", &n, &l, &r);
    		bool tag = 0;
    		if(r == n * (n - 1ll) + 1) {
    			r --; tag = 1;
    		}
    		ll sum = 0, pre = 0; len = 0;
    		for(int i = 1; i <= n; i ++) {
    			if(r <= sum) break ;
    			sum += 2 * (n - i);
    			if(sum >= l) {
    				getseq(i);	
    			} else {
    				pre += 2 * (n - i);
    			}
    		}
    		l -= pre; r -= pre;
    		for(int i = l; i <= r; i ++)
    			printf("%d ", seq[i]);
    		if(tag) printf("1 "); 
    		puts("");
    	}
    	return 0;
    }
    

    E:题意转化就是(p_1^{c_1}p_2^{c_2}...p_k^{c_k}),把(c_p)加一或减一,代价是(prod_{i ot = p}(c_i+1))。猜结论:先降再升,降和升的顺序无所谓,就一可重排列方案。

    int pc;
    ll p[N], d, fac[N] = {1ll}, fav[N] = {1ll}, a[N], b[N];
    int main() {
    	for(int i = 1; i < N; i ++) {
    		fac[i] = fac[i - 1] * i % mod;
    		fav[i] = qpow(fac[i], mod - 2);
    	}
    	scanf("%lld", &d);
    	for(ll i = 2; i * i <= d; i ++) {
    		if(d % i == 0) {
    			p[++ pc] = i;
    			while(d % i == 0) d /= i;
    		}
    	}
    	if(d > 1) p[++ pc] = d;
    	int t; scanf("%d", &t);
    	while(t --) {
    		ll u, v;
    		scanf("%lld%lld", &u, &v); a[0] = b[0] = 0;
    		for(int i = 1; i <= pc; i ++) {
    			ll tu = u, tv = v, cu = 0, cv = 0;
    			while(tu % p[i] == 0) {
    				tu /= p[i]; cu ++;
    			}
    			while(tv % p[i] == 0) {
    				tv /= p[i]; cv ++;
    			}
    			if(cu == cv) continue ;
    			if(cu < cv) {
    				a[++ a[0]] = cv - cu;
    			} else {
    				b[++ b[0]] = cu - cv;
    			}
    		}
    		ll a1 = 0, b1 = 0, x = 1, y = 1;
    		for(int i = 1; i <= b[0]; i ++) b1 += b[i], x = x * fav[b[i]] % mod;
    		x = x * fac[b1] % mod;
    		for(int i = 1; i <= a[0]; i ++) a1 += a[i], y = y * fav[a[i]] % mod;
    		y = y * fac[a1] % mod;
    		printf("%lld
    ", x * y % mod);
    	} 
    	return 0;
    }
    

    F:题意转化为保留(a)中价值和最大的一些数,使得前缀max构成的不可重集合为(b)

    先写出dp方程:(f_i)表示选出的数形成的前缀max集合是(b)不超过(a_i)的数构成的子集,注意(i)可以选(i)后面的数。

    (f_i = p_i + max(f_j + q(j,i,a_j)),j<i,exists k, a_i=b_k,a_j=b_{k-1})

    其中(q(j,i,a_j))表示((j,i))中满足(p > 0)(aleq a_j)(p)之和。

    那维护两个数组(x,y)(x[i])表示(i)后面(aleq a_i,p>0)(p)只和。(y[i])表示(aleq L,p>0)(p)之和,其中(L)表示b数组中(a_i)的上一个元素。这两个数组可以从后往前用树状数组求出。

    然后直接对值dp。(dp[v])表示以(v)结尾的答案,(L)表示(a_i=v)(b)中上一个数。(dp[v] = max(dp[v], dp[L] - y[i] + x[i] + p[i]))

    #include <algorithm>
    #include <cstdio>
    using namespace std;
    typedef long long ll;
    const int N = 5e5 + 10;
    const ll INF = 1e18;
    int n, m, a[N], b[N], c[N], pre[N];
    ll sum, dp[N], x[N], y[N];
    
    ll bit[N];
    void bitadd(int u, ll v) {
    	for(; u <= n; u += u & (-u)) {
    		bit[u] += v;
    	}
    }
    ll bitqry(int u) {
    	ll ans = 0;
    	for(; u >= 1; u &= u - 1) {
    		ans += bit[u];
    	}
    	return ans;
    }
    int main() {
    	scanf("%d", &n);
    	for(int i = 1; i <= n; i ++) { scanf("%d", a + i); pre[a[i]] = -1; }
    	for(int i = 1; i <= n; i ++) { scanf("%d", c + i); sum += c[i]; }
    	scanf("%d", &m);
    	for(int i = 1; i <= m; i ++) { scanf("%d", b + i); pre[b[i]] = b[i - 1]; }
    	for(int i = n; i >= 1; i --) {
    		if(~ pre[a[i]]) {
     			x[i] = bitqry(a[i]);
    			y[i] = bitqry(pre[a[i]]);
    		}
    		if(c[i] > 0) bitadd(a[i], c[i]);
    	}
    	dp[0] = 0; fill(dp + 1, dp + n + 1, -INF);
    	for(int i = 1; i <= n; i ++) {
    		if(~ pre[a[i]] && dp[pre[a[i]]] != -INF) {
    			dp[a[i]] = max(dp[a[i]], dp[pre[a[i]]] - y[i] + x[i] + c[i]);
    		}
    	}
    	if(dp[b[m]] == -INF) { puts("NO"); return 0; }
    	printf("YES
    %lld
    ", sum - dp[b[m]]);
    	return 0;
    }
    

    G:记原串(a),转换后是(b),匹配相当于(sum (a_i-t_i)^2(b_i-t_i)^2),拆式子用NTT卷积。

    #include <cstring>
    #include <cstdio>
    #include <random>
    #include <ctime>
    using namespace std;
    typedef long long ll;
    const int N = 524288 | 10, mod = 998244353, g = 3;
    int rev[N], len, w[N], inv_w[N];
    int qpow(int a, int b) {
    	int ans = 1;
    	for(; b >= 1; b >>= 1, a = (ll) a * a % mod)
    		if(b & 1) ans = (ll) ans * a % mod;
    	return ans;
    }
    void InitNTT(int n) {
    	int k = 0;
    	for(len = 1; len <= n; len <<= 1) k ++;
    	for(int i = 1; i < len; i ++)
    		rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (k - 1));
    	w[0] = inv_w[0] = 1;
    	int v = qpow(g, (mod - 1) / len);
    	for(int i = 1; i < len; i ++)
    		inv_w[len - i] = w[i] = (ll) w[i - 1] * v % mod;
    }
    void NTT(int *a, const int *w) {
    	for(int i = 1; i < len; i ++)
    		if(i < rev[i]) swap(a[i], a[rev[i]]);
    	for(int i = 1; i < len; i <<= 1) {
    		for(int j = 0, t = len / (i << 1); j < len; j += i << 1) {
    			const int *wn = w;
    			for(int k = j; k < j + i; k ++, wn += t) {
    				int t1 = a[k], t2 = (ll) *wn * a[k + i] % mod;
    				a[k] = (t1 + t2) % mod; a[k + i] = (t1 - t2) % mod;
    			}
    		}
    	}
    	if(w == inv_w)
    		for(int i = 0, v = - (mod - 1) / len; i < len; i ++)
    			a[i] = (ll) a[i] * v % mod;
    }
    int n, m, Map[30], a[N], b[N], c[N], sum[N], ans[N];
    char s[N], t[N];
    void multi(int *x, int *y) {
    	fill(x + n, x + len, 0); fill(y + m, y + len, 0);
    	NTT(x, w); NTT(y, w);
    	for(int i = 0; i < len; i ++) x[i] = (ll) x[i] * y[i] % mod;
    	NTT(x, inv_w);
    }
    int main() {
    	mt19937 rnd(time(0));
    	static int p[30];
    	for(int x, i = 1; i <= 26; i ++) scanf("%d", &x), p[x] = i;
    	for(int i = 1; i <= 26; i ++) Map[i] = (Map[i - 1] + rnd() % mod) % mod;
    	scanf("%s%s", t, s); n = strlen(s); m = strlen(t);
    	for(int i = 0; i < n; i ++) a[i] = Map[s[i] - 'a' + 1], b[i] = Map[p[s[i] - 'a' + 1]];
    	for(int i = 0; i < m; i ++) c[i] = Map[t[i] - 'a' + 1];
    	int x = 0;
    	for(int i = 0; i < m; i ++) (x += qpow(c[i], 4)) %= mod;
    	for(int i = 0; i < n - m + 1; i ++) ans[i] = x;
    
    	for(int i = 0; i < n; i ++) {
    		sum[i] = (ll) a[i] * b[i] % mod * a[i] % mod * b[i] % mod;
    		if(i) (sum[i] += sum[i - 1]) %= mod;
    	}
    	for(int i = 0; i < n - m + 1; i ++) {
    		(ans[i] += sum[i + m - 1]) %= mod;
    		if(i) (ans[i] += mod - sum[i - 1]) %= mod;
    	}
    	static int ta[N], tb[N]; InitNTT(n + m);
    
    	for(int i = 0; i < n; i ++) ta[i] = ((ll) a[i] * a[i] + (ll) b[i] * b[i]) % mod;
    	for(int i = 0; i < m; i ++) tb[m - 1 - i] = (ll) c[i] * c[i] % mod;
    	multi(ta, tb);
    	for(int i = m - 1; i < n + m - 1; i ++) {
    		(ans[i - m + 1] += ta[i]) %= mod;
    	}
    
    	for(int i = 0; i < n; i ++) ta[i] = (a[i] + b[i]) % mod;
    	for(int i = 0; i < m; i ++) tb[m - 1 - i] = (ll) c[i] * c[i] % mod * c[i] % mod;
    	multi(ta, tb);
    	for(int i = m - 1; i < n + m - 1; i ++) {
    		(ans[i - m + 1] += -2ll * ta[i] % mod) %= mod;
    	}
    
    	for(int i = 0; i < n; i ++) ta[i] = ((ll) a[i] * a[i] % mod * b[i] % mod + (ll) a[i] * b[i] % mod * b[i] % mod) % mod;
    	for(int i = 0; i < m; i ++) tb[m - 1 - i] = c[i];
    	multi(ta, tb);
    	for(int i = m - 1; i < n + m - 1; i ++) {
    		(ans[i - m + 1] += -2ll * ta[i] % mod) %= mod;
    	}
    
    	for(int i = 0; i < n; i ++) ta[i] = (ll) a[i] * b[i] % mod;
    	for(int i = 0; i < m; i ++) tb[m - 1 - i] = (ll) c[i] * c[i] % mod;
    	multi(ta, tb);
    	for(int i = m - 1; i < n + m - 1; i ++) {
    		(ans[i - m + 1] += 4ll * ta[i] % mod) %= mod;
    	}
    
    	for(int i = 0; i < n - m + 1; i ++) {
    		// printf("%lld !
    ", ans[i]);
    		putchar(ans[i] == 0 ? '1' : '0');
    	}
    	return 0;
    }
    
  • 相关阅读:
    AIR 访问网络资源老提示 Unhandled ioError 错误的解决办法
    Flex组件 EWindow 和 TimerStepper
    获取Flex SDK加载进度的方法
    我的第一个ANE程序
    给flex的自定义组件分类,使自定义组件放到组件面板的不同文件夹下!
    The status code returned from the server was: 500
    如何有效编写软件的75条建议
    让上帝讲真话——谈客户访谈思路
    C#之虚函数
    向您推荐几个虚拟化技术的BLOG(5.8日增加)
  • 原文地址:https://www.cnblogs.com/hongzy/p/cf1334.html
Copyright © 2011-2022 走看看